45 research outputs found

    Enhancing hypothiocyanite production by lactoperoxidase – mechanism and chemical properties of promotors

    Get PDF
    Background: The heme enzyme lactoperoxidase is found in body secretions where it significantly contributes to the humoral immune response against pathogens. After activation the peroxidase oxidizes thiocyanate to hypothiocyanite which is known for its microbicidal properties. Yet several pathologies are accompanied by a disturbed hypothiocyanite production which results in a reduced immune defense. Methods: The results were obtained by measuring enzyme-kinetic parameters using UV–vis spectroscopy and a standardized enzyme-kinetic test system as well as by the determination of second order rate constants using stopped-flow spectroscopy. Results: In this study we systematically tested thirty aromatic substrates for their efficiency to promote the lactoperoxidase-mediated hypothiocyanite production by restoring the native ferric enzyme state. Thereby hydrophobic compounds with a 3,4-dihydroxyphenyl partial structure such ashydroxytyrosol and selected flavonoids emerged as highly efficient promotors of the (pseudo-)halogenating lactoperoxidase activity. Conclusions: This study discusses important structure-function relationships of efficient aromatic LPO substrates and may contribute to the development of new agents to promote lactoperoxidase activity in secretory fluids of patients. Significance: This study may contribute to a better understanding of the (patho-)physiological importance of the (pseudo-)halogenating lactoperoxidase activity. The presented results may in future lead to the development of new therapeutic strategies which, by reactivating lactoperoxidase-derived hypothiocyanite production, promote the immunological activity of this enzyme

    Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BackgroundDisorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021.MethodsWe estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined.FindingsGlobally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer.InterpretationAs the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed

    Flavonoids as promoters of the (pseudo-)halogenating activity of lactoperoxidase and myeloperoxidase.

    No full text
    In this study several flavonoids were tested for their potential to regenerate the (pseudo-)halogenating activity (hypothiocyanite formation) of the heme peroxidases lactoperoxidase (LPO) and myeloperoxidase (MPO) after hydrogen peroxide-mediated enzyme inactivation. Several flavonoid subclasses with varying hydroxylation patterns (especially of the flavonoid B-ring) were examined in order to identify structural properties of efficient enzyme regenerators. Kinetic parameters and second-order rate constants were determined. A 3',4'-dihydroxylated B-ring together with C-ring saturation and hydroxylation were found to be important structural elements, which strongly influence the flavonoid binding and oxidizability by the LPO/MPO redox intermediates Compounds I and II. In combination with docking studies these results allow an understanding of the differences between flavonoids that promote the hypothiocyanite production by LPO and MPO and those that inhibit this enzymatic reaction.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Tannins and Tannin-Related Derivatives Enhance the (Pseudo-)Halogenating Activity of Lactoperoxidase

    No full text
    Several hydrolyzable tannins, proanthocyanidins, tannin derivatives, and a tannin-rich plant extract of tormentil rhizome were tested for their potential to regenerate the (pseudo-)halogenating activity, i.e. the oxidation of SCN- to hypothiocyanite -OSCN, of lactoperoxidase (LPO) after hydrogen peroxide-mediated enzyme inactivation. Measurements were performed using 5-thio-2-nitrobenzoic acid in the presence of tannins and related substances in order to determine kinetic parameters and to trace the LPO-mediated -OSCN formation. The results were combined with docking studies and molecular orbital analysis. The -OSCN-regenerating effect of tannin derivatives relates well with their binding properties toward LPO as well as their occupied molecular orbitals. Especially simple compounds like ellagic acid or methyl gallate and the complex plant extract were found as potent enzyme-regenerating compounds. As the (pseudo-)halogenating activity of LPO contributes to the maintenance of oral bacterial homeostasis, the results provide new insights into the antibacterial mode of action of tannins and related compounds. Furthermore, chemical properties of the tested compounds that are important for efficient enzyme-substrate interaction and regeneration of the -OSCN formation by LPO were identified.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Synthesis of a Phosphine-Stabilized Silicon(II) Hydride and Its Addition to Olefins: A Catalyst-Free Hydrosilylation Reaction

    No full text
    No cat.s allowed: A stable and isolable tricoordinate silicon(II) hydride stabilized by a phosphine ligand was successfully synthesized and fully characterized (see structure, Si green, P yellow, N blue, C gray, H white). Interestingly, this silicon hydride adds to olefins in an unprecedented catalyst-free hydrosilylation reaction in very mild conditions.We are grateful to the CNRS and the ANR (NOPROBLEM) for support of this work. R.R. acknowledges the Ministerio de Educación (MEC, Spain) for a postdoctoral fellowship.Peer reviewe
    corecore