15 research outputs found

    Vitamin D receptor gene polymorphisms and cognitive decline in Parkinson's disease.

    No full text
    We and others have suggested that vitamin D receptor gene (VDR) polymorphisms influence susceptibility for Parkinson's disease (PD), Alzheimer's disease (AD), mild cognitive impairment (MCI) or overall cognitive functioning. Here we examine VDR polymorphisms and cognitive decline in patients with PD. Non-Hispanic Caucasian PD patients (n=190) in the Parkinson Environment Gene (PEG) study were successfully genotyped for seven VDR polymorphisms. Cognitive function was assessed with the Mini-Mental State Exam (MMSE) at baseline and at a maximum of three follow-up exams. Using repeated-measures regression we assessed associations between VDR SNP genotypes and change in MMSE longitudinally. PD cases were on average 67.4years old at diagnosis and were followed for an average of 7.1years into disease. Each additional copy of the FokI A allele was associated with a 0.115 decrease in the total MMSE score per year of follow-up (β=-0.115, SE(β)=0.05, p=0.03) after adjusting for age, sex, education and PD duration. The effect on MMSE by the FokI A allele was comparable in absolute magnitude to the effect for disease duration in years prior to first interview (β=-0.129 per year, SE(β)=0.08, p=0.13), and years of education (β=0.118 per year, SE(β)=0.03, p<0.001). When LD/LED use and PD subtype were added to the model, the effect of the FokI A allele on total MMSE score was magnified (β=-0.141, SE(β)=0.05, p=0.005). Results point to Fokl, a functional VDR polymorphism, as being associated with cognitive decline in PD. Future studies examining the contributions of the vitamin D metabolic pathway to cognitive dysfunction in PD are needed

    Molecular networks in Network Medicine: Development and applications.

    Get PDF
    Network Medicine applies network science approaches to investigate disease pathogenesis. Many different analytical methods have been used to infer relevant molecular networks, including protein-protein interaction networks, correlation-based networks, gene regulatory networks, and Bayesian networks. Network Medicine applies these integrated approaches to Omics Big Data (including genetics, epigenetics, transcriptomics, metabolomics, and proteomics) using computational biology tools and, thereby, has the potential to provide improvements in the diagnosis, prognosis, and treatment of complex diseases. We discuss briefly the types of molecular data that are used in molecular network analyses, survey the analytical methods for inferring molecular networks, and review efforts to validate and visualize molecular networks. Successful applications of molecular network analysis have been reported in pulmonary arterial hypertension, coronary heart disease, diabetes mellitus, chronic lung diseases, and drug development. Important knowledge gaps in Network Medicine include incompleteness of the molecular interactome, challenges in identifying key genes within genetic association regions, and limited applications to human diseases. This article is categorized under: Models of Systems Properties and Processes > Mechanistic Models Translational, Genomic, and Systems Medicine > Translational Medicine Analytical and Computational Methods > Analytical Methods Analytical and Computational Methods > Computational Methods

    Genetic variability in ABCB1, occupational pesticide exposure, and Parkinson’s disease

    No full text
    BACKGROUND: Studies suggested that variants in the ABCB1 gene encoding P-glycoprotein, a xenobiotic transporter, may increase susceptibility to pesticide exposures linked to Parkinson’s Disease (PD) risk. OBJECTIVES: To investigate the joint impact of two ABCB1 polymorphisms and pesticide exposures on PD risk. METHODS: In a population-based case control study, we genotyped ABCB1 gene variants at rs1045642 (c.3435C/T) and rs2032582 (c.2677G/T/A) and assessed occupational exposures to organochlorine (OC) and organophosphorus (OP) pesticides based on self-reported occupational use and record-based ambient workplace exposures for 282 PD cases and 514 controls of European ancestry. We identified active ingredients in self-reported occupational use pesticides from a California database and estimated ambient workplace exposures between 1974 and 1999 employing a geographic information system together with records for state pesticide and land use. With unconditional logistic regression, we estimated marginal and joint contributions for occupational pesticide exposures and ABCB1 variants in PD. RESULTS: For occupationally exposed carriers of homozygous ABCB1 variant genotypes, we estimated odds ratios of 1.89 [95% confidence interval (CI): (0.87, 4.07)] to 3.71 [95% CI: (1.96, 7.02)], with the highest odds ratios estimated for occupationally exposed carriers of homozygous ABCB1 variant genotypes at both SNPs; but we found no multiplicative scale interactions. CONCLUSIONS: This study lends support to a previous report that commonly used pesticides, specifically OCs and OPs, and variant ABCB1 genotypes at two polymorphic sites jointly increase risk of PD

    Cost-Effectiveness of Computed Tomographic Colonography Screening for Colorectal Cancer in the Medicare Population

    No full text
    Background The Centers for Medicare and Medicaid Services (CMS) considered whether to reimburse computed tomographic colonography (CTC) for colorectal cancer screening of Medicare enrollees. To help inform its decision, we evaluated the reimbursement rate at which CTC screening could be cost-effective compared with the colorectal cancer screening tests that are currently reimbursed by CMS and are included in most colorectal cancer screening guidelines, namely annual fecal occult blood test (FOBT), flexible sigmoidoscopy every 5 years, flexible sigmoidoscopy every 5 years in conjunction with annual FOBT, and colonoscopy every 10 years.MethodsWe used three independently developed microsimulation models to assess the health outcomes and costs associated with CTC screening and with currently reimbursed colorectal cancer screening tests among the average-risk Medicare population. We assumed that CTC was performed every 5 years (using test characteristics from either a Department of Defense CTC study or the National CTC Trial) and that individuals with findings of 6 mm or larger were referred to colonoscopy. We computed incremental cost-effectiveness ratios for the currently reimbursed screening tests and calculated the maximum cost per scan (ie, the threshold cost) for the CTC strategy to lie on the efficient frontier. Sensitivity analyses were performed on key parameters and assumptions.ResultsAssuming perfect adherence with all tests, the undiscounted number life-years gained from CTC screening ranged from 143 to 178 per 1000 65-year-olds, which was slightly less than the number of life-years gained from 10-yearly colonoscopy (152-185 per 1000 65-year-olds) and comparable to that from 5-yearly sigmoidoscopy with annual FOBT (149-177 per 1000 65-year-olds). If CTC screening was reimbursed at 488perscan(slightlylessthanthereimbursementforacolonoscopywithoutpolypectomy),itwouldbethemostcostlystrategy.CTCscreeningcouldbecosteffectiveat488 per scan (slightly less than the reimbursement for a colonoscopy without polypectomy), it would be the most costly strategy. CTC screening could be cost-effective at 108-205perscan,dependingonthemicrosimulationmodelused.SensitivityanalysesshowedthatifrelativeadherencetoCTCscreeningwas25205 per scan, depending on the microsimulation model used. Sensitivity analyses showed that if relative adherence to CTC screening was 25% higher than adherence to other tests, it could be cost-effective if reimbursed at 488 per scan.ConclusionsCTC could be a cost-effective option for colorectal cancer screening among Medicare enrollees if the reimbursement rate per scan is substantially less than that for colonoscopy or if a large proportion of otherwise unscreened persons were to undergo screening by CTC
    corecore