192 research outputs found

    Assessment of the length of sick leave in patients with ischemic heart disease

    Get PDF
    Acute coronary syndrome; Coronary heart disease; Sick leaveSíndrome Coronario Agudo; Enfermedad Coronaria; Ausencia por enfermedadSíndrome coronari agut; Malaltia coronària; Absència per malaltiaBACKGROUND The prevalence of ischemic heart disease is high. Few recent studies have investigated the periods of sick leave of these patients. Our aim is to determine the length of sick leave after an acute coronary syndrome, its costs, associated factors and to assess the use of antidepressants and/or anxiolytics. METHODS An observational study of a retrospective cohort of patients on sick leave due to ischemic heart disease in a health region between 2008-2011, with follow-up until the first return to work, death, or end of the study (31/12/2012). MEASUREMENTS length of sick leave, sociodemographic variables and medical prescriptions. RESULTS Four hundred and ninety-seven patients (mean age 53 years, 90.7% male), diagnosed with acute myocardial infarction (60%), angina pectoris (20.7%) or chronic form of ischemic heart disease (19.1%). Thirty-seven per cent of patients took anxiolytics the year after diagnosis and 15% took antidepressants. The average duration of sick leave was 177 days (95% CI: 163-191 days). Patients diagnosed with acute myocardial infarction returned to work after a mean of 192 days, compared to 128 days in cases with angina pectoris. Patients who took antidepressants during the year after diagnosis returned to work after a mean of 240 days. The mean work productivity loss was estimated to be 9,673 euros/person. CONCLUSIONS The mean duration of sick leave due to ischemic heart disease was almost six months. Consumption of psychotropic medication doubled after the event. Older age, suffering an acute myocardial infarction and taking antidepressants were associated with a longer sick leave period

    Seroprevalence of Neospora caninum in non-carnivorous wildlife from Spain

    Get PDF
    Serum samples from 1034 non-carnivorous wildlife from Spain were tested for antibodies to Neospora caninum by competitive screening enzyme linked immunosorbent assay (ELISA) and confirmed by an indirect fluorescent antibody test (IFAT). High agreement was observed between results in both techniques (kappa value higher than 0.9). Prevalences of N. caninum antibodies positive by both techniques were 11.8% of 237 red deer (Cervus elaphus), 7.7% of 13 barbary sheep (Ammotragus lervia), 6.1% of 33 roe deer (Capreolus capreolus) and 0.3% of 298 wild boar (Sus scrofa). In one of 53 hares (Lepus granatensis), antibodies were found in the ELISA but could not be confirmed by IFAT due to lack of sample. Antibodies to N. caninum were not found in any of 251 wild rabbits (Oryctolagus cuniculus), 79 fallow deer (Dama dama), 27 mouflon (Ovis ammon), 40 chamois (Rupicapra pyrenaica) and three Spanish ibex (Capra pyrenaica). Statistically significant differences were observed between N. caninum seroprevalence in red deer and management of hunting estates (open versus fenced) with higher prevalence in fenced estates, and among sampling sites. Seroprevalence was particularly high in some areas (MO estate in South-Central Spain or some estates of Catalonia, North-East Spain), while no contact with N. caninum was observed in others. Results indicate that in certain areas of Spain, N. caninum is present in wildlife, especially in red deer. These results have important implications in both sylvatic cycles and may influence the prevalence of infection in cattle farms in those areas. To our knowledge, this is the first report of antibodies to N. caninum in wildlife from Spain and the first report of N. caninum antibodies in barbary sheep and wild boar.This is a contribution to the agreements between Yolanda Fierro and UCLM, CSIC, OAPN and SDGSA, Ministerio de Agricultura. Fran Ruiz-Fons received financial support through a grant from the Ministerio de Educación y Ciencia. This study received support from the Spanish CICYT, grant AGL2004-06103-C02-01/GAN and AGL2005-07401-CO3-01-GAN, Ministerio de Ciencia y Tecnología and FEDER.Peer reviewe

    Searches for neutrinos in the direction of radio-bright blazars with the ANTARES telescope

    Full text link
    Active galaxies, especially blazars, are among the most promising neutrino source candidates. To date, ANTARES searches for these objects considered GeV-TeV γ\gamma-ray bright blazars. Here, a statistically complete radio-bright blazar sample is used as the target for searches of origins of neutrinos collected by the ANTARES neutrino telescope over 13 years of operation. The hypothesis of a neutrino-blazar directional correlation is tested by pair counting and by a complementary likelihood-based approach. The resulting post-trial pp-value is 3.0%3.0\% (2.2σ2.2\sigma in the two-sided convention), possibly indicating a correlation. Additionally, a time-dependent analysis is performed to search for temporal clustering of neutrino candidates as a mean of detecting neutrino flares in blazars. None of the investigated sources alone reaches a significant flare detection level. However, the presence of 18 sources with a pre-trial significance above 3σ3\sigma indicates a p=1.4%p=1.4\% (2.5σ2.5\sigma in the two-sided convention) detection of a time-variable neutrino flux. An \textit{a posteriori} investigation reveals an intriguing temporal coincidence of neutrino, radio, and γ\gamma-ray flares of the J0242+1101 blazar at a p=0.5%p=0.5\% (2.9σ2.9\sigma in the two-sided convention) level. Altogether, the results presented here suggest a possible connection of neutrino candidates detected by the ANTARES telescope with radio-bright blazars

    Probing invisible neutrino decay with KM3NeT-ORCA

    Get PDF
    In the era of precision measurements of the neutrino oscillation parameters, upcoming neutrino experiments will also be sensitive to physics beyond the Standard Model. KM3NeT/ORCA is a neutrino detector optimised for measuring atmospheric neutrinos from a few GeV to around 100 GeV. In this paper, the sensitivity of the KM3NeT/ORCA detector to neutrino decay has been explored. A three-flavour neutrino oscillation scenario, where the third neutrino mass state ν3\nu_3 decays into an invisible state, e.g. a sterile neutrino, is considered. We find that KM3NeT/ORCA would be sensitive to invisible neutrino decays with 1/α3=τ3/m3<1801/\alpha_3=\tau_3/m_3 < 180~ps/eV\mathrm{ps/eV} at 90%90\% confidence level, assuming true normal ordering. Finally, the impact of neutrino decay on the precision of KM3NeT/ORCA measurements for θ23\theta_{23}, Δm312\Delta m^2_{31} and mass ordering have been studied. No significant effect of neutrino decay on the sensitivity to these measurements has been found.Comment: 27 pages, 14 figures, bibliography updated, typos correcte

    Embedded Software of the KM3NeT Central Logic Board

    Full text link
    The KM3NeT Collaboration is building and operating two deep sea neutrino telescopes at the bottom of the Mediterranean Sea. The telescopes consist of latices of photomultiplier tubes housed in pressure-resistant glass spheres, called digital optical modules and arranged in vertical detection units. The two main scientific goals are the determination of the neutrino mass ordering and the discovery and observation of high-energy neutrino sources in the Universe. Neutrinos are detected via the Cherenkov light, which is induced by charged particles originated in neutrino interactions. The photomultiplier tubes convert the Cherenkov light into electrical signals that are acquired and timestamped by the acquisition electronics. Each optical module houses the acquisition electronics for collecting and timestamping the photomultiplier signals with one nanosecond accuracy. Once finished, the two telescopes will have installed more than six thousand optical acquisition nodes, completing one of the more complex networks in the world in terms of operation and synchronization. The embedded software running in the acquisition nodes has been designed to provide a framework that will operate with different hardware versions and functionalities. The hardware will not be accessible once in operation, which complicates the embedded software architecture. The embedded software provides a set of tools to facilitate remote manageability of the deployed hardware, including safe reconfiguration of the firmware. This paper presents the architecture and the techniques, methods and implementation of the embedded software running in the acquisition nodes of the KM3NeT neutrino telescopes

    Implementation and first results of the KM3NeT real-time core-collapse supernova neutrino search

    Get PDF
    The authors acknowledge the financial support of the funding agencies: Agence Nationale de la Recherche (contract ANR-15-CE31-0020), Centre National de la Recherche Scientifique (CNRS), Commission Europeenne (FEDER fund and Marie Curie Program), Institut Universitaire de France (IUF), LabEx UnivEarthS (ANR-10-LABX-0023 and ANR-18-IDEX-0001), Paris ile-de-France Region, France; Shota Rustaveli National Science Foundation of Georgia (SRNSFG, FR-18-1268), Georgia; Deutsche Forschungsgemeinschaft (DFG), Germany; The General Secretariat of Research and Technology (GSRT), Greece; Istituto Nazionale di Fisica Nucleare (INFN), Ministero dell'Universita e della Ricerca (MIUR), PRIN 2017 program (Grant NAT-NET 2017W4HA7S) Italy; Ministry of Higher Education Scientific Research and Professional Training, ICTP through Grant AF-13, Morocco; Nederlandse organisatie voor Wetenschappelijk Onderzoek (NWO), the Netherlands; The National Science Centre, Poland (2015/18/E/ST2/00758); National Authority for Scientific Research (ANCS), Romania; Ministerio de Ciencia, Innovacion, Investigacion y Universidades (MCIU): Programa Estatal de Generacion de Conocimiento (refs. PGC2018-096663-B-C41, -A-C42, -B-C43, -B-C44) (MCIU/FEDER), Generalitat Valenciana: Prometeo (PROMETEO/2020/019), Grisolia (ref. GRISOLIA/2018/119) and GenT (refs. CIDEGENT/2018/034, /2019/043, /2020/049) programs, Junta de Andalucia (ref. A-FQM-053-UGR18), La Caixa Foundation (ref. LCF/BQ/IN17/11620019), EU: MSC program (ref. 101025085), Spain.The KM3NeT research infrastructure is unconstruction in the Mediterranean Sea. KM3NeT will study atmospheric and astrophysical neutrinos with two multipurpose neutrino detectors, ARCA and ORCA, primarily aimed at GeV–PeV neutrinos. Thanks to the multiphotomultiplier tube design of the digital optical modules, KM3NeT is capable of detecting the neutrino burst from a Galactic or near-Galactic core-collapse supernova. This potential is already exploitable with the first detection units deployed in the sea. This paper describes the real-time implementation of the supernova neutrino search, operating on the two KM3NeT detectors since the first months of 2019. A quasi-online astronomy analysis is introduced to study the time profile of the detected neutrinos for especially significant events. Themechanism of generation and distribution of alerts, aswell as the integration into theSNEWSandSNEWS 2.0 global alert systems, are described. The approach for the follow-up of external alerts with a search for a neutrino excess in the archival data is defined. Finally, an overviewof the current detector capabilities and a report after the first two years of operation are given.French National Research Agency (ANR)European Commission ANR-15-CE31-0020Centre National de la Recherche Scientifique (CNRS)Commission EuropeenneInstitut Universitaire de France (IUF)LabEx UnivEarthS ANR-10-LABX-0023 ANR-18-IDEX-0001Shota Rustaveli National Science Foundation of Georgia (SRNSFG), Georgia FR-18-1268German Research Foundation (DFG)Greek Ministry of Development-GSRTIstituto Nazionale di Fisica Nucleare (INFN)Ministry of Education, Universities and Research (MIUR)PRIN 2017 program, Italy NAT-NET 2017W4HA7SMinistry of Higher Education Scientific Research and Professional Training, ICTP, Morocco AF-13Netherlands Organization for Scientific Research (NWO) Netherlands GovernmentNational Science Centre, Poland 2015/18/E/ST2/00758National Authority for Scientific Research (ANCS), RomaniaMinisterio de Ciencia, Innovacion, Investigacion y Universidades (MCIU): Programa Estatal de Generacion de Conocimiento PGC2018-096663-B-C41 PGC2018-096663-A-C42 PGC2018-096663-B-C43 PGC2018-096663-B-C44Generalitat Valenciana PROMETEO/2020/019Grisolia program GRISOLIA/2018/119 CIDEGENT/2018/034Junta de Andalucia A-FQM-053-UGR18La Caixa Foundation LCF/BQ/IN17/11620019EU: MSC program 101025085Paris Ile-de-France Region, FranceGenT program CIDEGENT/2018/034 CIDEGENT/2019/043 CIDEGENT/2020/04

    The Power Board of the KM3NeT Digital Optical Module: design, upgrade, and production

    Full text link
    The KM3NeT Collaboration is building an underwater neutrino observatory at the bottom of the Mediterranean Sea consisting of two neutrino telescopes, both composed of a three-dimensional array of light detectors, known as digital optical modules. Each digital optical module contains a set of 31 three inch photomultiplier tubes distributed over the surface of a 0.44 m diameter pressure-resistant glass sphere. The module includes also calibration instruments and electronics for power, readout and data acquisition. The power board was developed to supply power to all the elements of the digital optical module. The design of the power board began in 2013, and several prototypes were produced and tested. After an exhaustive validation process in various laboratories within the KM3NeT Collaboration, a mass production batch began, resulting in the construction of over 1200 power boards so far. These boards were integrated in the digital optical modules that have already been produced and deployed, 828 until October 2023. In 2017, an upgrade of the power board, to increase reliability and efficiency, was initiated. After the validation of a pre-production series, a production batch of 800 upgraded boards is currently underway. This paper describes the design, architecture, upgrade, validation, and production of the power board, including the reliability studies and tests conducted to ensure the safe operation at the bottom of the Mediterranean Sea throughout the observatory's lifespa
    corecore