115 research outputs found
Hint for a TeV neutrino emission from the Galactic Ridge with ANTARES
Interactions of cosmic ray protons, atomic nuclei, and electrons in the interstellar medium in the inner part of the Milky Way produce a γ-ray flux from the Galactic Ridge. If the γ-ray emission is dominated by proton and nuclei interactions, a neutrino flux comparable to the γ-ray flux is expected from the same sky region.Data collected by the ANTARES neutrino telescope are used to constrain the neutrino flux from the Galactic Ridge in the 1-100 TeV energy range. Neutrino events reconstructed both as tracks and showers are considered in the analysis and the selection is optimized for the search of an excess in the region |ι| < 30°, |b| < 2°. The expected background in the search region is estimated using an off-zone region with similar sky coverage. Neutrino signal originating from a power-law spectrum with spectral index ranging from Τν = 1 to 4 is simulated in both channels. The observed energy distributions are fitted to constrain the neutrino emission from the Ridge.The energy distributions in the signal region are inconsistent with the background expectation at ∼ 96% confidence level. The mild excess over the background is consistent with a neutrino flux with a power law with a spectral index 2.45+0.22-0.34 and a flux normalization dNv/dEv = 4.0+2.7-2.0 x 1016 GeV−1 cm−2 s−1 sr−1 at 40 TeV reference energy. Such flux is consistent with the expected neutrino signal if the bulk of the observed γ-ray flux from the Galactic Ridge originates from interactions of cosmic ray protons and nuclei with a power-law spectrum extending well into the PeV energy range
Searches for neutrinos in the direction of radio-bright blazars with the ANTARES telescope
Active galaxies, especially blazars, are among the most promising neutrino
source candidates. To date, ANTARES searches for these objects considered
GeV-TeV -ray bright blazars. Here, a statistically complete
radio-bright blazar sample is used as the target for searches of origins of
neutrinos collected by the ANTARES neutrino telescope over 13 years of
operation. The hypothesis of a neutrino-blazar directional correlation is
tested by pair counting and by a complementary likelihood-based approach. The
resulting post-trial -value is ( in the two-sided
convention), possibly indicating a correlation. Additionally, a time-dependent
analysis is performed to search for temporal clustering of neutrino candidates
as a mean of detecting neutrino flares in blazars. None of the investigated
sources alone reaches a significant flare detection level. However, the
presence of 18 sources with a pre-trial significance above indicates
a ( in the two-sided convention) detection of a
time-variable neutrino flux. An \textit{a posteriori} investigation reveals an
intriguing temporal coincidence of neutrino, radio, and -ray flares of
the J0242+1101 blazar at a ( in the two-sided convention)
level. Altogether, the results presented here suggest a possible connection of
neutrino candidates detected by the ANTARES telescope with radio-bright
blazars
Search for neutrino counterparts to the gravitational wave sources from O3 catalogues with the ANTARES detector
Since 2015 the LIGO and Virgo interferometers have detected gravitational
waves from almost one hundred coalescences of compact objects (black holes and
neutron stars). This article presents the results of a search performed with
data from the ANTARES telescope to identify neutrino counterparts to the
gravitational wave sources detected during the third LIGO/Virgo observing run
and reported in the catalogues GWTC-2, GWTC-2.1, and GWTC-3. This search is
sensitive to all-sky neutrinos of all flavours and of energies GeV,
thanks to the inclusion of both track-like events (mainly induced by
charged-current interactions) and shower-like events (induced by other
interaction types). Neutrinos are selected if they are detected within s from the GW merger and with a reconstructed direction compatible with
its sky localisation. No significant excess is found for any of the 80 analysed
GW events, and upper limits on the neutrino emission are derived. Using the
information from the GW catalogues and assuming isotropic emission, upper
limits on the total energy and on the fraction of the total
energy budget emitted as neutrinos of
all flavours are also computed. Finally, a stacked analysis of all the 72
binary black hole mergers (respectively the 7 neutron star - black hole merger
candidates) has been performed to constrain the typical neutrino emission
within this population, leading to the limits: erg and (respectively, erg and ) for spectrum and isotropic emission.
Other assumptions including softer spectra and non-isotropic scenarios have
also been tested.Comment: 13 pages, 4 figure
Probing invisible neutrino decay with KM3NeT-ORCA
In the era of precision measurements of the neutrino oscillation parameters,
upcoming neutrino experiments will also be sensitive to physics beyond the
Standard Model. KM3NeT/ORCA is a neutrino detector optimised for measuring
atmospheric neutrinos from a few GeV to around 100 GeV. In this paper, the
sensitivity of the KM3NeT/ORCA detector to neutrino decay has been explored. A
three-flavour neutrino oscillation scenario, where the third neutrino mass
state decays into an invisible state, e.g. a sterile neutrino, is
considered. We find that KM3NeT/ORCA would be sensitive to invisible neutrino
decays with ~ at confidence
level, assuming true normal ordering. Finally, the impact of neutrino decay on
the precision of KM3NeT/ORCA measurements for ,
and mass ordering have been studied. No significant effect of neutrino decay on
the sensitivity to these measurements has been found.Comment: 27 pages, 14 figures, bibliography updated, typos correcte
Embedded Software of the KM3NeT Central Logic Board
The KM3NeT Collaboration is building and operating two deep sea neutrino
telescopes at the bottom of the Mediterranean Sea. The telescopes consist of
latices of photomultiplier tubes housed in pressure-resistant glass spheres,
called digital optical modules and arranged in vertical detection units. The
two main scientific goals are the determination of the neutrino mass ordering
and the discovery and observation of high-energy neutrino sources in the
Universe. Neutrinos are detected via the Cherenkov light, which is induced by
charged particles originated in neutrino interactions. The photomultiplier
tubes convert the Cherenkov light into electrical signals that are acquired and
timestamped by the acquisition electronics. Each optical module houses the
acquisition electronics for collecting and timestamping the photomultiplier
signals with one nanosecond accuracy. Once finished, the two telescopes will
have installed more than six thousand optical acquisition nodes, completing one
of the more complex networks in the world in terms of operation and
synchronization. The embedded software running in the acquisition nodes has
been designed to provide a framework that will operate with different hardware
versions and functionalities. The hardware will not be accessible once in
operation, which complicates the embedded software architecture. The embedded
software provides a set of tools to facilitate remote manageability of the
deployed hardware, including safe reconfiguration of the firmware. This paper
presents the architecture and the techniques, methods and implementation of the
embedded software running in the acquisition nodes of the KM3NeT neutrino
telescopes
Implementation and first results of the KM3NeT real-time core-collapse supernova neutrino search
The authors acknowledge the financial support of the funding agencies: Agence Nationale de la Recherche (contract ANR-15-CE31-0020), Centre National de la Recherche Scientifique (CNRS), Commission Europeenne (FEDER fund and Marie Curie Program), Institut Universitaire de France (IUF), LabEx UnivEarthS (ANR-10-LABX-0023 and ANR-18-IDEX-0001), Paris ile-de-France Region, France; Shota Rustaveli National Science Foundation of Georgia (SRNSFG, FR-18-1268), Georgia; Deutsche Forschungsgemeinschaft (DFG), Germany; The General Secretariat of Research and Technology (GSRT), Greece; Istituto Nazionale di Fisica Nucleare (INFN), Ministero dell'Universita e della Ricerca (MIUR), PRIN 2017 program (Grant NAT-NET 2017W4HA7S) Italy; Ministry of Higher Education Scientific Research and Professional Training, ICTP through Grant AF-13, Morocco; Nederlandse organisatie voor Wetenschappelijk Onderzoek (NWO), the Netherlands; The National Science Centre, Poland (2015/18/E/ST2/00758); National Authority for Scientific Research (ANCS), Romania; Ministerio de Ciencia, Innovacion, Investigacion y Universidades (MCIU): Programa Estatal de Generacion de Conocimiento (refs. PGC2018-096663-B-C41, -A-C42, -B-C43, -B-C44) (MCIU/FEDER), Generalitat Valenciana: Prometeo (PROMETEO/2020/019), Grisolia (ref. GRISOLIA/2018/119) and GenT (refs. CIDEGENT/2018/034, /2019/043, /2020/049) programs, Junta de Andalucia (ref. A-FQM-053-UGR18), La Caixa Foundation (ref. LCF/BQ/IN17/11620019), EU: MSC program (ref. 101025085), Spain.The KM3NeT research infrastructure is unconstruction
in the Mediterranean Sea. KM3NeT will study
atmospheric and astrophysical neutrinos with two multipurpose
neutrino detectors, ARCA and ORCA, primarily
aimed at GeV–PeV neutrinos. Thanks to the multiphotomultiplier
tube design of the digital optical modules,
KM3NeT is capable of detecting the neutrino burst from
a Galactic or near-Galactic core-collapse supernova. This potential is already exploitable with the first detection units
deployed in the sea. This paper describes the real-time implementation
of the supernova neutrino search, operating on the
two KM3NeT detectors since the first months of 2019. A
quasi-online astronomy analysis is introduced to study the
time profile of the detected neutrinos for especially significant
events. Themechanism of generation and distribution of
alerts, aswell as the integration into theSNEWSandSNEWS
2.0 global alert systems, are described. The approach for the
follow-up of external alerts with a search for a neutrino excess
in the archival data is defined. Finally, an overviewof the current
detector capabilities and a report after the first two years
of operation are given.French National Research Agency (ANR)European Commission ANR-15-CE31-0020Centre National de la Recherche Scientifique (CNRS)Commission EuropeenneInstitut Universitaire de France (IUF)LabEx UnivEarthS ANR-10-LABX-0023
ANR-18-IDEX-0001Shota Rustaveli National Science Foundation of Georgia (SRNSFG), Georgia FR-18-1268German Research Foundation (DFG)Greek Ministry of Development-GSRTIstituto Nazionale di Fisica Nucleare (INFN)Ministry of Education, Universities and Research (MIUR)PRIN 2017 program, Italy NAT-NET 2017W4HA7SMinistry of Higher Education Scientific Research and Professional Training, ICTP, Morocco AF-13Netherlands Organization for Scientific Research (NWO)
Netherlands GovernmentNational Science Centre, Poland 2015/18/E/ST2/00758National Authority for Scientific Research (ANCS), RomaniaMinisterio de Ciencia, Innovacion, Investigacion y Universidades (MCIU): Programa Estatal de Generacion de Conocimiento PGC2018-096663-B-C41
PGC2018-096663-A-C42
PGC2018-096663-B-C43
PGC2018-096663-B-C44Generalitat Valenciana PROMETEO/2020/019Grisolia program GRISOLIA/2018/119
CIDEGENT/2018/034Junta de Andalucia A-FQM-053-UGR18La Caixa Foundation LCF/BQ/IN17/11620019EU: MSC program 101025085Paris Ile-de-France Region, FranceGenT program CIDEGENT/2018/034
CIDEGENT/2019/043
CIDEGENT/2020/04
The Power Board of the KM3NeT Digital Optical Module: design, upgrade, and production
The KM3NeT Collaboration is building an underwater neutrino observatory at
the bottom of the Mediterranean Sea consisting of two neutrino telescopes, both
composed of a three-dimensional array of light detectors, known as digital
optical modules. Each digital optical module contains a set of 31 three inch
photomultiplier tubes distributed over the surface of a 0.44 m diameter
pressure-resistant glass sphere. The module includes also calibration
instruments and electronics for power, readout and data acquisition. The power
board was developed to supply power to all the elements of the digital optical
module. The design of the power board began in 2013, and several prototypes
were produced and tested. After an exhaustive validation process in various
laboratories within the KM3NeT Collaboration, a mass production batch began,
resulting in the construction of over 1200 power boards so far. These boards
were integrated in the digital optical modules that have already been produced
and deployed, 828 until October 2023. In 2017, an upgrade of the power board,
to increase reliability and efficiency, was initiated. After the validation of
a pre-production series, a production batch of 800 upgraded boards is currently
underway. This paper describes the design, architecture, upgrade, validation,
and production of the power board, including the reliability studies and tests
conducted to ensure the safe operation at the bottom of the Mediterranean Sea
throughout the observatory's lifespa
Prospects for combined analyses of hadronic emission from -ray sources in the Milky Way with CTA and KM3NeT
The Cherenkov Telescope Array and the KM3NeT neutrino telescopes are major
upcoming facilities in the fields of -ray and neutrino astronomy,
respectively. Possible simultaneous production of rays and neutrinos
in astrophysical accelerators of cosmic-ray nuclei motivates a combination of
their data. We assess the potential of a combined analysis of CTA and KM3NeT
data to determine the contribution of hadronic emission processes in known
Galactic -ray emitters, comparing this result to the cases of two
separate analyses. In doing so, we demonstrate the capability of Gammapy, an
open-source software package for the analysis of -ray data, to also
process data from neutrino telescopes. For a selection of prototypical
-ray sources within our Galaxy, we obtain models for primary proton and
electron spectra in the hadronic and leptonic emission scenario, respectively,
by fitting published -ray spectra. Using these models and instrument
response functions for both detectors, we employ the Gammapy package to
generate pseudo data sets, where we assume 200 hours of CTA observations and 10
years of KM3NeT detector operation. We then apply a three-dimensional binned
likelihood analysis to these data sets, separately for each instrument and
jointly for both. We find that the largest benefit of the combined analysis
lies in the possibility of a consistent modelling of the -ray and
neutrino emission. Assuming a purely leptonic scenario as input, we obtain, for
the most favourable source, an average expected 68% credible interval that
constrains the contribution of hadronic processes to the observed -ray
emission to below 15%.Comment: 18 pages, 15 figures. Submitted to journa
KM3NeT broadcast optical data transport system
The optical data transport system of the KM3NeT neutrino telescope at the bottom of the Mediterranean Sea will provide more than 6000 optical modules in the detector arrays with a point-to-point optical connection to the control stations onshore. The ARCA and ORCA detectors of KM3NeT are being installed at a depth of about 3500 m and 2500 m, respectively and their distance to the control stations is about 100 kilometers and 40 kilometers. In particular, the two detectors are optimised for the detection of cosmic neutrinos with energies above about 1 TeV (ARCA) and for the detection of atmospheric neutrinos with energies in the range 1 GeV-1 TeV (ORCA). The expected maximum data rate is 200 Mbps per optical module. The implemented optical data transport system matches the layouts of the networks of electro-optical cables and junction boxes in the deep sea. For efficient use of the fibres in the system the technology of Dense Wavelength Division Multiplexing is applied. The performance of the optical system in terms of measured bit error rates, optical budget are presented. The next steps in the implementation of the system are also discussed.The authors acknowledge the financial support of the funding agencies: Agence Nationale de la
Recherche (contract ANR-15-CE31-0020), Centre National de la Recherche Scientifique (CNRS),
Commission Européenne (FEDER fund and Marie Curie Program), Institut Universitaire de France
(IUF), LabEx UnivEarthS (ANR-10-LABX-0023 and ANR-18-IDEX-0001), Paris Île-de-France
Region, France; Deutsche Forschungsgemeinschaft (DFG), Germany; The General Secretariat of
Research and Innovation (GSRI), Greece Istituto Nazionale di Fisica Nucleare (INFN), Ministero
dell’Università e della Ricerca (MIUR), PRIN 2017 program (Grant NAT-NET 2017W4HA7S) Italy;
Ministry of Higher Education, Scientific Research and Innovation, Morocco, and the Arab Fund
for Economic and Social Development, Kuwait; Nederlandse organisatie voor Wetenschappelijk
Onderzoek (NWO), the Netherlands; The National Science Centre, Poland (2021/41/N/ST2/01177);
National Authority for Scientific Research (ANCS), Romania; Ministerio de Ciencia, Innovación,
Investigación y Universidades (MCIU): Programa Estatal de Generación de Conocimiento (refs.
PGC2018-096663-B-C41, -A-C42, -B-C43, -B-C44 and refs. PID2021-124591NB-C41, -C42,
-C43) (MCIU/FEDER, Generalitat Valenciana: Prometeo (PROMETEO/2020/019), Grisolía (refs.
GRISOLIA/2018/119, /2021/192) and GenT (refs. CIDEGENT/2018/034, /2019/043, /2020/049,
/2021/023) programs, Junta de Andalucía (ref. A-FQM-053-UGR18), La Caixa Foundation (ref.
LCF/BQ/IN17/11620019), EU: MSC program (ref. 101025085), Spain; María Zambrano program
within the framework of grants for retaining in the Spanish university system (Spanish Ministry of
Universities, funded by the European Union, NextGenerationEU).Peer reviewe
Implementation and first results of the KM3NeT real-time core-collapse supernova neutrino search
The KM3NeT research infrastructure is unconstruction in the Mediterranean Sea. KM3NeT will study atmospheric and astrophysical neutrinos with two multi-purpose neutrino detectors, ARCA and ORCA, primarily aimed at GeV–PeV neutrinos. Thanks to the multi-photomultiplier tube design of the digital optical modules, KM3NeT is capable of detecting the neutrino burst from a Galactic or near-Galactic core-collapse supernova. This potential is already exploitable with the first detection units deployed in the sea. This paper describes the real-time implementation of the supernova neutrino search, operating on the two KM3NeT detectors since the first months of 2019. A quasi-online astronomy analysis is introduced to study the time profile of the detected neutrinos for especially significant events. The mechanism of generation and distribution of alerts, as well as the integration into the SNEWS and SNEWS 2.0 global alert systems, are described. The approach for the follow-up of external alerts with a search for a neutrino excess in the archival data is defined. Finally, an overview of the current detector capabilities and a report after the first two years of operation are given
- …