353 research outputs found

    Ni abundance in the core of the Perseus Cluster: an answer to the significance of resonant scattering

    Get PDF
    Using an XMM-Newton observation of the Perseus cluster we show that the excess in the flux of the 7-8 keV line complex previously detected by ASCA and BeppoSAX is due to an overabundance of Nickel rather than to an anomalously high Fe HeÎČ\beta/Fe Heα\alpha ratio. This observational fact leads to the main result that resonant scattering, which was assumed to be responsible for the supposed anomalous Fe HeÎČ\beta/Fe Heα\alpha ratio, is no longer required. The absence of resonant scattering points towards the presence of significant gas motions (either turbulent or laminar) in the core of the Perseus cluster.Comment: 29 pages, 10 bw figures, accepted for publication in the Astrophysical Journa

    An HST/COS Observation of Broad Lyα\alpha Emission and Associated Absorption Lines of the BL Lacertae Object H 2356-309

    Full text link
    Weak spectral features in BL Lacertae objects (BL Lac) often provide a unique opportunity to probe the inner region of this rare type of active galactic nucleus. We present a Hubble Space Telescope/Cosmic Origins Spectrograph observation of the BL Lac H 2356-309. A weak Lyα\alpha emission line was detected. This is the fourth detection of a weak Lyα\alpha emission feature in the ultraviolet (UV) band in the so-called "high energy peaked BL Lacs", after Stocke et al. Assuming the line-emitting gas is located in the broad line region (BLR) and the ionizing source is the off-axis jet emission, we constrain the Lorentz factor (Γ\Gamma) of the relativistic jet to be ≄8.1\geq 8.1 with a maximum viewing angle of 3.6∘^\circ. The derived Γ\Gamma is somewhat larger than previous measurements of Γ≈3−5\Gamma \approx 3 - 5, implying a covering factor of ∌\sim 3% of the line-emitting gas. Alternatively, the BLR clouds could be optically thin, in which case we constrain the BLR warm gas to be ∌10−5 M⊙\sim 10^{-5}\rm\ M_{\odot}. We also detected two HI and one OVI absorption lines that are within ∣Δv∣<150 km s−1|\Delta v| < 150\rm\ km\ s^{-1} of the BL Lac object. The OVI and one of the HI absorbers likely coexist due to their nearly identical velocities. We discuss several ionization models and find a photoionization model where the ionizing photon source is the BL Lac object can fit the observed ion column densities with reasonable physical parameters. This absorber can either be located in the interstellar medium of the host galaxy, or in the BLR.Comment: 7 pages, 2 figures, accepted for publication in Ap

    An XMM-Newton study of the 401 Hz accreting pulsar SAX J1808.4-3658 in quiescence

    Get PDF
    SAX J1808.4-3658 is a unique source being the first Low Mass X-ray Binary showing coherent pulsations at a spin period comparable to that of millisecond radio pulsars. Here we present an XMM-Newton observation of SAX J1808.4-3658 in quiescence, the first which assessed its quiescent luminosity and spectrum with good signal to noise. XMM-Newton did not reveal other sources in the vicinity of SAX J1808.4-3658 likely indicating that the source was also detected by previous BeppoSAX and ASCA observations, even if with large positional and flux uncertainties. We derive a 0.5-10 keV unabsorbed luminosity of L_X=5x10^{31} erg/s, a relatively low value compared with other neutron star soft X-ray transient sources. At variance with other soft X-ray transients, the quiescent spectrum of SAX J1808.4-3658 was dominated by a hard (Gamma~1.5) power law with only a minor contribution (<10%) from a soft black body component. If the power law originates in the shock between the wind of a turned-on radio pulsar and matter outflowing from the companion, then a spin-down to X-ray luminosity conversion efficiency of eta~10^{-3} is derived; this is in line with the value estimated from the eclipsing radio pulsar PSR J1740-5340. Within the deep crustal heating model, the faintness of the blackbody-like component indicates that SAX J1808.4-3658 likely hosts a massive neutronstar (M>1.7 solar masses).Comment: Paper accepted for publication in ApJ

    Fossil group origins - VI. Global X-ray scaling relations of fossil galaxy clusters

    Get PDF
    We present the first pointed X-ray observations of 10 candidate fossil galaxy groups and clusters. With these Suzaku observations, we determine global temperatures and bolometric X-ray luminosities of the intracluster medium (ICM) out to r500r_{500} for six systems in our sample. The remaining four systems show signs of significant contamination from non-ICM sources. For the six objects with successfully determined r500r_{500} properties, we measure global temperatures in the range 2.8≀TX≀5.3 keV2.8 \leq T_{\mathrm{X}} \leq 5.3 \ \mathrm{keV}, bolometric X-ray luminosities of 0.8×1044 ≀LX,bol≀7.7×1044 erg s−10.8 \times 10^{44} \ \leq L_{\mathrm{X,bol}} \leq 7.7\times 10^{44} \ \mathrm{erg} \ \mathrm{s}^{-1}, and estimate masses, as derived from TXT_{\mathrm{X}}, of M500>1014 M⊙M_{500} > 10^{14} \ \mathrm{M}_{\odot}. Fossil cluster scaling relations are constructed for a sample that combines our Suzaku observed fossils with fossils in the literature. Using measurements of global X-ray luminosity, temperature, optical luminosity, and velocity dispersion, scaling relations for the fossil sample are then compared with a control sample of non-fossil systems. We find the fits of our fossil cluster scaling relations are consistent with the relations for normal groups and clusters, indicating fossil clusters have global ICM X-ray properties similar to those of comparable mass non-fossil systems.Comment: 17 pages, 7 figures, 8 tables. Accepted for publication in MNRA

    Dark matter-baryons separation at the lowest mass scale: the Bullet Group

    Full text link
    We report on the X-ray observation of a strong lensing selected group, SL2S J08544-0121, with a total mass of 2.4±0.6×10142.4 \pm 0.6 \times 10^{14} M⊙\rm{M_\odot} which revealed a separation of 124±20124\pm20 kpc between the X-ray emitting collisional gas and the collisionless galaxies and dark matter (DM), traced by strong lensing. This source allows to put an order of magnitude estimate to the upper limit to the interaction cross section of DM of 10 cm2^2 g−1^{-1}. It is the lowest mass object found to date showing a DM-baryons separation and it reveals that the detection of bullet-like objects is not rare and confined to mergers of massive objects opening the possibility of a statistical detection of DM-baryons separation with future surveys.Comment: 5 pages, 3 figures. Accepted for publication in MNRAS Letters. Typos correcte

    Irregular sloshing cold fronts in the nearby merging groups NGC 7618 and UGC 12491: evidence for Kelvin-Helmholtz instabilities

    Full text link
    We present results from two \sim30 ks Chandra observations of the hot atmospheres of the merging galaxy groups centered around NGC 7618 and UGC 12491. Our images show the presence of arc-like sloshing cold fronts wrapped around each group center and \sim100 kpc long spiral tails in both groups. Most interestingly, the cold fronts are highly distorted in both groups, exhibiting 'wings' along the fronts. These features resemble the structures predicted from non-viscous hydrodynamic simulations of gas sloshing, where Kelvin-Helmholtz instabilities (KHIs) distort the cold fronts. This is in contrast to the structure seen in many other sloshing and merger cold fronts, which are smooth and featureless at the current observational resolution. Both magnetic fields and viscosity have been invoked to explain the absence of KHIs in these smooth cold fronts, but the NGC 7618/UGC 12491 pair are two in a growing number of both sloshing and merger cold fronts that appear distorted. Magnetic fields and/or viscosity may be able to suppress the growth of KHIs at the cold fronts in some clusters and groups, but clearly not in all. We propose that the presence or absence of KHI-distortions in cold fronts can be used as a measure of the effective viscosity and/or magnetic field strengths in the ICM.Comment: ApJ, accepted. Uses emulateapj styl

    Mapping small-scale temperature and abundance structures in the core of the Perseus cluster

    Full text link
    We report further results from a 191 ks Chandra observation of the core of the Perseus cluster, Abell 426. The emission-weighted temperature and abundance structure is mapped detail. There are temperature variations down to ~1 kpc in the brightest regions. Globally, the strongest X-ray surface brightness features appear to be caused by temperature changes. Density and temperature changes conspire to give approximate azimuthal balance in pressure showing that the gas is in hydrostatic equilibrium. Si, S, Ar, Ca, Fe and Ni abundance profiles rise inward from about 100 kpc, peaking at about 30-40 kpc. Most of these abundances drop inwards of the peak, but Ne shows a central peak, all of which may be explained by resonance scattering. There is no evidence for a widespread additional cooler temperature component in the cluster with a temperature greater than a factor of two from the local temperature. There is however evidence for a widespread hard component which may be nonthermal. The temperature and abundance of gas in the cluster is observed to be correlated in a manner similar to that found between clusters.Comment: ~20 pages, colour, accepted by MNRAS. Updates include a more extensive discussion of the hard component, reference corrections, and a few other minor changes. A version with good figure quality is at http://www-xray.ast.cam.ac.uk/papers/perdetail

    Studying the WHIM Content of the Galaxy Large-Scale Structures along the Line of Sight to H 2356-309

    Full text link
    We make use of a 500ks Chandra HRC-S/LETG spectrum of the blazar H2356-309, combined with a lower S/N spectrum of the same target, to search for the presence of warm-hot absorbing gas associated with two Large-Scale Structures (LSSs) crossed by this sightline at z=0.062 (the Pisces-Cetus Supercluster, PCS) and at z=0.128 ("Farther Sculptor Wall", FSW). No statistically significant (>=3sigma) individual absorption is detected from any of the strong He- or H-like transitions of C, O and Ne at the redshifts of the structures. However we are still able to constrain the physical and geometrical parameters of the associated putative absorbing gas, by performing joint spectral fit of marginal detections and upper limits of the strongest expected lines with our self-consistent hybrid ionization WHIM spectral model. At the redshift of the PCS we identify a warm phase with logT=5.35_-0.13^+0.07 K and log N_H =19.1+/-0.2 cm^-2 possibly coexisting with a hotter and less significant phase with logT=6.9^+0.1_-0.8 K and log N_H=20.1^+0.3_-1.7 cm^-2 (1sigma errors). For the FSW we estimate logT=6.6_-0.2^+0.1 K and log N_H=19.8_-0.8^+0.4 cm^-2. Our constraints allow us to estimate the cumulative number density per unit redshifts of OVII WHIM absorbers. We also estimate the cosmological mass density obtaining Omega_b(WHIM)=(0.021^+0.031_-0.018) (Z/Z_sun)^-1, consistent with the mass density of the intergalactic 'missing baryons' for high metallicities.Comment: 29 pages, 8 figures, 4 tables. Accepted for publication in Ap

    The late Miocene-early Pliocene biogenic bloom: an integrated study in the Tasman sea

    Get PDF
    The Late Miocene-Early Pliocene Biogenic Bloom (∌9–3.5 Ma) was a paleoceanographic phenomenon defined by anomalously high accumulations of biological components at multiple open ocean sites, especially in certain regions of the Indian, and Pacific oceans. Its temporal and spatial extent with available information leaves fundamental questions about driving forces and responses unanswered. In this work, we focus on the middle part of the Biogenic Bloom (7.4–4.5 Ma) at International Ocean Discovery Program Site U1506 in the Tasman Sea, where we provide an integrated age model based on orbital tuning of the Natural Gamma Radiation, benthic foraminiferal oxygen isotopes, and calcareous nannofossil biostratigraphy. Benthic foraminiferal assemblages suggest changes in deep water oxygen concentration and seafloor nutrient supply during generally high export productivity conditions. From 7.4 to 6.7 Ma, seafloor conditions were characterized by episodic nutrient supply, perhaps related to seasonal phytoplankton blooms. From 6.7 to 4.5 Ma, the regime shifted to a more stable interval characterized by eutrophic and dysoxic conditions. Combined with seismic data, a regional change in paleoceanography is inferred at around 6.7 Ma, from stronger and well-oxygenated bottom currents to weaker, oxygen-depleted bottom currents. Our results support the hypothesis that the Biogenic Bloom was a complex, multiphase phenomenon driven by changes in ocean currents, rather than a single uniform period of sustained sea surface water productivity. Highly resolved studies are thus fundamental to its understanding and the disentanglement of local, regional, and global imprints

    X-ray Spectroscopy of the Core of the Perseus Cluster with Suzaku: Elemental Abundances in the Intracluster Medium

    Full text link
    The results from Suzaku observations of the central region of the Perseus cluster are presented. Deep exposures with the X-ray Imaging Spectrometer provide high quality X-ray spectra from the intracluster medium. X-ray lines from helium-like Cr and Mn have been detected significantly for the first time in clusters. In addition, elemental abundances of Ne, Mg, Si, S, Ar, Ca, Fe, and Ni are accurately measured within 10' (or 220 kpc) from the cluster center. The relative abundance ratios are found to be within a range of 0.8-1.5 times the solar value. These abundance ratios are compared with previous measurements, those in extremely metal-poor stars in the Galaxy, and theoretical models.Comment: 10 pages, 3 figures, accepted for ApJ
    • 

    corecore