139 research outputs found

    Critical Reynolds number for nonlinear flow through rough-walled fractures: The role of shear processes

    Get PDF
    This paper experimentally investigates the role of shear processes on the variation of critical Reynolds number and nonlinear flow through rough-walled rock fractures. A quantitative criterion was developed to quantify the onset of nonlinear flow by comprehensive combination of Forchheimer's law and Reynolds number. At each shear displacement, several high-precision water flow tests were carried out with different hydraulic gradients then the critical Reynolds number was determined based on the developed criterion. The results show that (i) the Forchheimer's law was fitted very well to experimental results of nonlinear fluid flow through rough-walled fractures, (ii) the coefficients of viscous and inertial pressure drops experience 4 and 7 orders of magnitude reduction during shear displacement, respectively, and (iii) the critical Reynolds number varies from 0.001 to 25 and experiences 4 orders of magnitude enlargement by increasing shear displacement from 0 to 20 mm. These findings may prove useful in proper understanding of fluid flow through rock fractures, or inclusions in computational studies of large-scale nonlinear flow in fractured rocks

    Chapter 14 Electrical Properties of Soils

    Get PDF
    This chapter discusses the electric and electromagnetic methods that are used to evaluate the electrical properties of soils. Electric techniques exploit the flow of a steady-state current in the subsurface, while electromagnetic methods rely on the phenomenon of electromagnetic induction and the wave character of the electromagnetic field. The electrical techniques and associated properties are: (a) spontaneous potential methods in which the formation of water resistivity is determined; (b) resistivity methods in which the apparent resistivity can be calculated using Wenner, Schlumberger, and dipole-dipole arrays; and (c) specific conductivity methods in which the soil-specific conductivity is calculated by incorporating in the analysis of soil geometric factors, such as fabric anisotropy, tortuosity, resistance to solid matrix, bulk fluid phase, and electric double layer. Various parameters that influence the measured electrical properties are also presented, such as the nature of the soil composition (particle size distribution, mineralogy), soil structure (porosity, pore size distribution, connectivity, and anisotropy), moisture content, temperature, concentration of dissolved species in the pore-solution, wet-dry cycles, age of contaminants, and mineral formation due to biodegradation. Finally, the extraction of aquifer hydraulic properties such as porosity and hydraulic conductivity, from the measured electrical properties is discussed

    Predicting the cation exchange capacity of reservoir rocks from complex dielectric permittivity measurements

    Full text link
    Dimensional analysis was performed to understand the physics of ionic dispersion in reservoir rocks and to identify the factors influencing the cation exchange capacity (CEC) of these rocks. Dimensional analysis revealed the existence of a general relation independent of the unit system between two dimensionless groups denoted as the cationic dispersion number [Formula: see text] and the conductivity number [Formula: see text]. The former group [Formula: see text] stands for the ratio of the CEC to the electrical double-layer dispersion. The latter group [Formula: see text] represents the ratio of the low-frequency ionic conductivity to the high-frequency electronic polarization. Complex dielectric permittivity measurements on 121 water-saturated sandstone and carbonate rock samples were used to validate the dimensionless groups. In retrospect, dimensional analysis was useful in identifying variables influencing the CEC of hydrocarbon rocks. In particular, these variables consist of rock porosity [Formula: see text], specific surface area, and five other parameters of the Cole-Cole function, which describes the frequency dependence of the complex permittivity of rock samples in the range 10–1300 MHz. The Cole-Cole function parameters are [Formula: see text], which is a characteristic relaxation time; [Formula: see text] is the so-called spread parameter; [Formula: see text] is the real DC conductivity of water-saturated rocks; and [Formula: see text] and [Formula: see text], which are the real numbers representing the static and the high-frequency dielectric permittivities of the water-saturated rock, respectively. A general regression neural network (GRNN) model was developed to predict the CEC of shaly sandstones and carbonate rocks as a function of the variables identified by the dimensional analysis as essential in predicting the CEC. The CEC prediction capability of the GRNN model has been tested with a blind data set, and it has been compared with the CEC prediction capability using a nonlinear regression model developed in this study and using a linear regression model available in the literature. The GRNN model outperformed both of these empirical models. With the GRNN model, it is possible to obtain reliable quantitative estimates of the CEC of shaly sandstone and carbonate rocks using nondestructive frequency-dependent dielectric permittivity measurements that are rapid, economic, and accurate. In return, accurate and fast estimates of the CEC are useful in many petroleum engineering applications. They can be used to identify clay types and can also be used to quantify the volume of hydrocarbon in shaly sands using well-log resistivity data. The results of this study represent a major advantage for formation evaluation, wellbore stability analysis, and designing stimulation jobs. </jats:p

    Explaining the comparative perception of e-payment: role of e-shopping value, e-payment benefits and Islamic compliance

    Full text link
    Purpose This study aims to examine three factors affecting the comparative e-payment perception, namely, perceived e-shopping value, e-payment benefits and Islamic Sharia compliance. It verifies an original model explaining the comparative perception of e-payment as a tool to pay online purchases. The newly integrated variables are the perceived compliance of the e-payment with Islamic Sharia, as a moderator, and the perceived e-shopping value, as a predictor. This investigation also tested the mediating role of e-payment benefits between perceived e-shopping value and e-payment comparative perception. Design/methodology/approach A questionnaire was distributed, via an online survey, to professional and personal networks of Master students who have spread the survey link to their social media groups. This procedure resulted in 185 valid observations. Findings Results show that the comparative perception of e-payment systems, as opposed to cash on delivery, is explained directly by e-payment benefits and indirectly by e-shopping value. The comparison of the model paths based on the perceived compliance to Islamic Sharia showed that this variable is non-significant as a moderator. Originality/value The verified model and paths of this study have not been covered yet, namely, the direct and indirect effects of e-shopping value. Thus, their verification constitutes the main originality of this article. Besides, the verification of the moderating role of compliance to Islamic sharia has not been verified in prior studies about e-payment. </jats:sec

    A Modified Leverett <i>J</i>-Function for the Dune and Yates Carbonate Fields:  A Case Study

    Full text link
    corecore