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Abstract This paper experimentally investigates the role of shear processes on the variation of critical
Reynolds number and nonlinear flow through rough-walled rock fractures. A quantitative criterion was
developed to quantify the onset of nonlinear flow by comprehensive combination of Forchheimer’s law
and Reynolds number. At each shear displacement, several high-precision water flow tests were carried out
with different hydraulic gradients then the critical Reynolds number was determined based on the devel-
oped criterion. The results show that (i) the Forchheimer’s law was fitted very well to experimental results of
nonlinear fluid flow through rough-walled fractures, (ii) the coefficients of viscous and inertial pressure
drops experience 4 and 7 orders of magnitude reduction during shear displacement, respectively, and (iii)
the critical Reynolds number varies from 0.001 to 25 and experiences 4 orders of magnitude enlargement
by increasing shear displacement from 0 to 20 mm. These findings may prove useful in proper understand-
ing of fluid flow through rock fractures, or inclusions in computational studies of large-scale nonlinear flow
in fractured rocks.

1. Introduction

The hydraulic, mechanical, and coupled hydromechanical behavior of rock masses are of considerable inter-
est in many natural phenomena in hydrogeology and geophysics. Moreover, these behaviors are very
important in engineering applications such as reservoir exploitation for water supply, petroleum, geother-
mal, and heat storages. Therefore, it is becoming essential to be able to characterize the physical processes
governing hydraulic and mechanical interactions of individual fractures that could be the fundamental ele-
ments to understand the coupled hydromechanical behavior of rock masses.

The hydraulic behavior of rock fractures is significantly dependent upon the geometry of void space where
the change in the geometry or aperture has obvious implications for fluid flow [Cook, 1992; Isakov et al.,
2001; O’Brien et al., 2003; Ogilvie et al., 2006; Pyrak-Nolte et al., 1988; Tsang and Witherspoon, 1981]. When
shearing of a rough fracture occurs, the opposed contacting asperities slide over each other that cause sur-
face damages [Jing et al., 1992; Pereira and de Freitas, 1993] and increasing in the aperture or dilatancy [Bar-
ton et al., 1985; Holland et al., 2011]. Consequently, the fracture geometry and its attributes such as contact
ratio, dilation, relative roughness, and matedness experience rigorous disturbances during shear processes
[Sharifzadeh et al., 2006]. Therefore, rigorous disturbances in the hydraulic behavior of fracture will be antici-
pated during shear [Auradou et al., 2005, 2006; Boulon et al., 1993; Esaki et al., 1991, 1999; Gentier et al., 2000;
Giger et al., 2011; Hans and Boulon, 2003; Koyama et al., 2006; Li et al., 2008; Matsuki et al., 2010; Olsson,
1992; Olsson and Barton, 2001; Olsson and Brown, 1993; Sharifzadeh, 2005; Xiong et al., 2011; Yeo et al., 1998]
that is the main contribution of this paper.

The general description of Newtonian fluid motion in a rough-walled fracture is given by the Navier-Stokes (NS)
equations composed of a set of coupled nonlinear partial derivatives of varying orders [Brush and Thomson,
2003; Javadi et al., 2010; Zimmerman and Bodvarsson, 1996)]. Unfortunately, the existence and uniqueness of
closed form solution of the full NS equations in three dimensions is not proven yet. On the other hand, the sim-
plified forms of the NS equations such as linear Stokes equation [Brown et al., 1995; Mourzenko et al., 1995] and
the Reynolds lubrication equation [Brown, 1987; Ge, 1997; Nicholl et al., 1999; Oron and Berkowitz, 1998; Renshaw,
1995; Talon et al., 2010] are just valid for laminar flow, diminishing the inertia effects, through fractures with
especial geometrical conditions that are rarely encountered for natural fractures subjected to in situ stress.
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The linearity of Darcian flow comes from the diminishing the inertia effects (i.e., kinetic energy) that can
only be anticipated for low flow rates. By increasing the flux, inertial terms cannot be neglected with regard
to viscous forces and the pressure drop increases more than the proportional increases in the flux that is
known as the nonlinear fluid flow [Cooke, 1973; Elsworth and Doe, 1986; Holditch and Morse, 1976; Jung, 1989;
Kohl et al., 1997; Wen et al., 2006; Yeo and Ge, 2001]. Flow regimes and nonlinear behavior of fluid flow through
fractures have been investigated empirically [Elsworth and Goodman, 1986; Lomize, 1951; Louis, 1969], experi-
mentally [Cherubini et al., 2012; Cornwell and Murphy, 1985; Davies and White, 1928; Huitt, 1956; Ji et al., 2008;
Konzu and Kueper, 2004; Nowamooz et al., 2009; Parrish, 1963; Qian et al., 2005, 2011; Quinn et al., 2011; Ranjith
and Darlington, 2007; Ranjith and Viete, 2011; Zimmerman et al., 2004], and numerically [Bu�es et al., 2004; Javadi
et al., 2010; Kolditz, 2001; Skjetne et al., 1999]. These studies propose that nonlinearity in flow through fractures
becomes increasingly significant with increasing the Reynolds number. The ‘‘critical’’ Reynolds number charac-
terizes the onset of flow transition to nonlinear. However, a wide range of critical Reynolds numbers from 1 to
2300 has been suggested for fractures [Cornwell and Murphy, 1985; Davies and White, 1928; Huitt, 1956; Ji et al.,
2008; Konzu and Kueper, 2004; Louis, 1969; Parrish, 1963; Ranjith and Viete, 2011; Skjetne et al., 1999; Zimmerman
et al., 2004]. The possible explanations of the discrepancy between these arguments can be addressed by the
mismatched definitions of the flow regime transition, nonunique criteria of the flow nonlinearity, and a suffi-
ciently wide range of the geometrical characteristics of the fracture and flow conditions that covered the data
and correlations of these studies. For instance, by increasing the fracture roughness, the critical Reynolds num-
ber will rapidly decrease [Javadi et al., 2010; Konzu and Kueper, 2004; Parrish, 1963; Ranjith and Darlington,
2007; Zimmerman et al., 2004]. However, it is questionable whether these critical Reynolds numbers are valid
for natural rough-walled fractures that are subjected to field stress or mechanical displacements. Although the
above researches represent a significant step forward in deepening our qualitative understanding of the non-
linear fluid flow and hydromechanical behavior of rough rock fractures, few efforts have been implemented
on the influence of the shear processes on the critical Reynolds numbers.

The main purpose of this paper is to experimentally elucidate the role of shearing on the variation of critical
Reynolds number and nonlinearity of fluid flow through rough-walled rock fractures. To reach this goal, first
a criterion for flow nonlinearity so-called ‘‘CFN model’’ was developed to quantify the onset of nonlinear
flow by comprehensive combination of Reynolds number and Forchheimer’s law. A series of hydromechani-
cal laboratory investigations were performed on different initially closely mated rock fractures undergoing

shear to evaluate effects of
mechanical displacements on the
hydraulic behavior. At each shear
displacement, several high-
precision water flow tests were
carried out with different hydrau-
lic gradients and critical Reynolds
number was calculated based on
the CFN model. Finally, the varia-
tion of critical Reynolds number
with shearing was analyzed using
mechanical behavior of fractures
recorded during shear-flow labo-
ratory investigations.

2. Theory and
Background

2.1. Fracture Shear Behavior
The typical shear behavior of a
rough-walled rock fracture under
direct shear laboratory test con-
dition and a constant normal
stress is ideally illustrated in Fig-
ure 1. As shown in Figure 1a, the

Figure 1. Typical behavior of fresh rock fractures under laboratory direct shear test condi-
tion: (a) shear stress and (b) normal displacement.
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shear behavior presents an unstable mode of failure where the shear strength shows a remarkable drop
from the peak strength at small displacements to lower residual one at large displacement. In fact, the shear
stress increases rapidly until the peak strength is reached. As the displacement continues, the shear stress
will fall to residual value that will then remain constant, even for large shear displacements. Due to the
roughness of the fracture surfaces, the shear displacement is accompanied with normal displacement, dila-
tion, as shown in Figure 1b. The dilatancy of rough-walled fractures shows a nonlinear manner. The rate of
dilation is greatest at small shear displacements, decreases after the peak shear stress, and approaches a
constant value during the residual region when shear stress also approaches a constant value.

The shear characteristic of rock fractures influenced by a large extent on several phenomena and many effec-
tive factors including wall strength and weathering state [Barton, 1973, 1976; Bandis et al., 1983], boundary
conditions and normal stresses [Haberfield and Johnston, 1994; Haberfield and Seidel, 1999; Haque, 1999; Jiang
et al., 2004; Leichnitz, 1985; Pereira and de Freitas, 1993; Saeb and Amadei, 1992; Seidel and Haberfield, 2002;
Sun et al., 1985], time [Dieterich, 1972; Ruina, 1983], deformation history [Babanouri et al., 2011; Belem et al.,
2007; Boulon et al., 2002; Chern et al., 2012; Dowding et al., 1991; Huang et al., 1993], fracture geometry and
roughness [Archambault et al., 1997; Barton, 1973, 1976; Barton et al., 1985; Gentier et al., 2000; Goodman,
1969; Grasselli et al., 2002; Huang et al., 2002; Karami and Stead, 2008; Kwafniewski and Wang, 1997; Lopez
et al., 2003; Park and Song, 2009; Zhang et al., 2006; Zhao, 1997], shear direction [Jing et al., 1992, 1994], and
scale [Bandis et al.,1981; Barton and Bandis, 1980; Barton et al., 1985]. From these, fracture geometry and sur-
face roughness play a key role in the shear characteristic of rock fractures. The unstable mode of shear stress
displacement (Figure 1) is caused by processes arising from surface mismatch, surface disturbances and asper-
ity damages. The asperities on fracture surface can be divided into two categories including primary asperities
and high-order asperities. The primary asperities have the largest wavelengths compared with the dimension
of the specimen and the high order or secondary asperities are much smaller in size. Based on the above stud-
ies, the shear stress-displacement behavior and corresponding dilatancy of initially matched and fresh (with-
out previous shear deformation) rough-walled fractures can be divided into five phases:

1. Initial closure: As shear stress is applied, two fracture surfaces are settled and interlocked. Therefore, the
fracture experiences negative dilation or closure. In this step, the stiffness and contact area are increased
without remarkable damages in asperities [Moradian et al., 2010].

2. Linear prepeak: This phase shows nearly linear or elastic deformations. The slope of the shear stress-
displacement curve remains constant and loading does not produce irreversible damages in asperities. Dila-
tion starts to increase along this phase due to the sliding of the high-order asperities.

3. Nonlinear prepeak: This phase starts with transition from linear to irreversible nonlinear behavior at the
yield point with corresponding yield shear stress. By increasing shear displacement, the high-order asper-
ities in the actual contact area are gradually sheared off or broken away, therefore, providing resistance to
the shear displacement. Dilation increases along this phase because of the sliding and damaging of the
high-order asperities. This period is ended by peak shear stress where dilatancy shows its maximum rate.

4. Postpeak: The shear stress-displacement curve shows a progressive softening behavior. During this phase,
most of the high-order asperities are broken and primary asperities, in contact, start to damage (depending
on the amount of normal stress). After peak shear stress, the resistance from the high-order asperities
becomes negligible because they are mostly sheared off. The contact area and rate of dilation decrease
after the peak shear stress due to the overriding of the asperities on the opposing rough surfaces.

5. Residual: The rate of dilation decreases dramatically and approaches a constant value during this phase.
Shear stress also falls to a constant value corresponds to the residual friction resistance that depends on the
rock type and damaged surface morphology. Asperities degradation is continued, but in a lower intensity
than postpeak phase.

All these processes associate with rigorous changes in fracture geometry that has obvious disturbances on
hydraulic behavior. Therefore, proper solution for hydromechanical problems will require fundamental under-
standing of the surface damages and externally measured displacements that sustain during shear sliding.

2.2. Fluid Flow Through Fractures
The general description of fluid flow in a single fracture is given by the NS equations which express momen-
tum and mass conservation over the fracture void space. Considering the steady laminar flow of a
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Newtonian fluid with constant density and viscosity through a fracture with impermeable walls, the NS
equations may be written in vector form as [Brush and Thomson, 2003]

q u:rð Þu5lr2u2rp; (1)

where u 5 (ux, uy, uz) is the flow velocity vector, q is the fluid density, l is the fluid dynamic viscosity, and p
is the hydrodynamic pressure. Equation (1) is composed of a set of coupled nonlinear partial derivatives of
varying orders. In order to have a closed system of equations, they must be supplemented by the continuity
equation, which represents conservation of mass. For an incompressible fluid, conservation of mass is equiv-
alent to conservation of volume, and the equation takes the form [Zimmerman and Bodvarsson, 1996],

r:u50: (2)

The complexity of these equations, combined with the complicated geometry of rock fracture, renders
them difficult to solve. Therefore, further simplifications are usually adopted to overcome the difficulties of
working with the NS equations. By assuming that inertial forces in the fluid are negligible compared with
the viscous and pressure forces, the NS equations can be reduced to solvable forms such as linear Stokes
equation. For viscous flow, linear Stokes equation, under uniform one-dimensional pressure gradient
between two smooth parallel plates, well known as Poiseuille flow, the total volumetric flow rate through
the fracture, Q, is given by

Q52
wa3

12l
rp52

kAf

l
rp; (3)

where w is the fracture width (perpendicular to the pressure gradient), a is the aperture of the idealized par-
allel smooth fracture, k is the fracture permeability, and Af is the cross-section area. This equation is com-
monly referred to as ‘‘cubic law’’ [Witherspoon et al., 1980], which predicts that the flow rate is proportional
to the cube of aperture (for idealized fracture with parallel and smooth surfaces). The linear relationship
between the flow rate and the pressure gradient comes from the diminishing the inertia effects (i.e., kinetic
energy) that can only be anticipated for low flow rates. By increasing the flux, the pressure drop increases
more than the proportional increases in the flux that is known as the nonlinear flow [Elsworth and Doe,
1986; Jung, 1989; Wen et al., 2006; Yeo and Ge, 2001]. The most classical approach for the mathematical
description of the nonlinear flow through fractures is the use of the Forchheimer’s law as [Bear, 1972]

2rp5
l
k

ux1q�buxjux j; (4a)

2rp5AQ1BQ2; (4b)

where �b is called non-Darcy coefficient or inertial resistance with dimension of L21, A and B are coeffi-
cients that describe energy losses due to viscous and inertial dissipation mechanisms, respectively
[Moutsopoulos, 2009]. It should be noted that, the coefficient of A is equal to l

T, where T is the transmis-
sivity. It is generally accepted that the Forchheimer’s law adequately describes the nonlinear fluid flow
through rough-walled rock fractures, especially for strong inertia regime [Al-Yaarubi et al., 2005; Cherubini
et al., 2012; Cooke, 1973; Holditch and Morse, 1976; Ji et al., 2008; Kohl et al., 1997; Konzu and Kueper,
2004; Moutsopoulos, 2009; Nowamooz et al., 2009; Qian et al., 2011; Quinn et al., 2011; Ranjith and Dar-
lington, 2007; Ranjith and Viete, 2011; Skjetne et al., 1999; Zimmerman et al., 2004]. For practical purposes,
it can be demonstrated that the Forchheimer’s law can probably be applied over the entire range of
flow rates where it effectively reduces to Darcy’s law at low flow rates. Therefore, the nonlinear analysis
of fluid flow through fractures and development of criterion for flow nonlinearity in this paper were
implemented based on the Forchheimer’s law.

Generally, the onset of flow transition to nonlinear can be characterized by two different dimensionless
numbers known as Forchheimer number and Reynolds number. The Forchheimer number is defined as
the ratio of nonlinear to linear pressure losses or the ratio of the quadratic coefficient to the linear
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coefficient in the Forchheimer’s law. Based on the equation (4b), the Forchheimer number, FO, can be
formulated as,

FO5
BQ2

AQ
5

BQ
A
: (5)

The Reynolds number gives a measure to compare the ratio of inertial forces to viscous forces and conse-
quently quantifies the relative importance of these two types of forces for given flow conditions. For flow
through fractures, the Reynolds number, Re, is defined as [Zimmerman et al., 2004]

Re5
q�v D
l

5
qQ
lw

; (6)

where �v is the average velocity and D is the characteristic dimension of the flow system that equals to
mean aperture of fracture. The ‘‘critical’’ Reynolds number characterizes the onset of flow transition to non-
linear and can be defined as the point at which the nonlinear pressure drop contributes a percentage of
the overall pressure drop. Considering the Forchheimer’s law, the role of nonlinear pressure drop (or pres-
sure gradient) reaches to a percentage of the overall pressure drop where,

a5
BQ2

AQ1BQ2
5

FO

11FO
: (7)

The criterion for flow nonlinearity so-called ‘‘CFN model’’ that defines the critical Reynolds number, Rec, can
be obtained by simplifying equation (7) and introducing into equation (6) as,

Rec5
Aqa

Blwð12aÞ : (8)

This equation shows a simple measure to quantify the critical Reynolds number for onset of nonlinear flow
through rough-walled fractures. It should be noted that the Forchheimer number is implicitly involved in
the CFN model. In fact, the term a

ð12aÞ in this equation is the Forchheimer number that can be inferred by
simplifying equation (7). Moreover, the critical Reynolds number in equation (8) can be defined as the ratio
of Forchheimer number to dimensionless Forchheimer coefficient, b, introduced by Zimmerman et al. [2004]
in the form of Rec5

FO
b .

In recent studies, the critical condition for onset of flow nonlinearity has been defined as the point at which
the nonlinear pressure drop contributes, say, 10% of the overall pressure drop [Zeng and Grigg, 2006; Zim-
merman et al., 2004], that is equal to a 5 0.1 or FO 5 0.11. Considering this condition, the critical Reynolds
number for nonlinear fluid flow through rough-walled fractures will be suggested as,

Rec5
Aq

9Blw
: (9)

3. Experimental Setup

3.1. Specimen Preparation
Granite specimens of 180 mm in length, 100 mm in width, and 80 mm in height were used for hydrome-
chanical experiments. Specimens were provided from intact hard granite (unit weight 2.61 g/cm3, porosity
0.37%, uniaxial compressive strength 172 MPa). An artificial fracture was created at midheight of each intact
rock specimen using a generator apparatus consists of horizontal and normal loading jacks and a steel
guide box that is schematically shown in Figure 2a. To create this fracture correctly and easily, two saw-cut
slits with 1 mm width and 5 mm depth are initially generated at the midheight of the intact rock specimen.
The intact specimen with saw-cut slits is set in the fracture generator apparatus and a normal load about
200 kN (or about 8.5 MPa) is applied on the upper face of specimen. A pair of steel wedges are placed in
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Figure 2. Schematic view of the experimental setup: (a) fracture generator apparatus, (b) shear-flow test apparatus, and (c) hydraulic seal-
ing around specimen [after Mitani et al., 2005].
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the saw-cut slits on the opposite faces and a constant horizontal load about 120 kN is applied through this
steel wedges. Then the normal load is gradually decreased until the wedges penetrate into the specimen, and
the split is extended by tensile failure. During the fracture generation, horizontal load is kept constant. Thus,
specimen is fractured smoothly under controlled conditions without causing violent vibrations and crashing.

3.2. Shear-Flow Test Apparatus
Figure 2b shows a schematic view of the apparatus used for investigating the coupled shear-flow behavior
of rough-walled rock fractures. This apparatus consists of three main unites: mechanical testing unit,
hydraulic testing unit, and a control and data acquisition system. The shear and normal stresses, shear and
normal displacements, and water flow rate can be measured precisely and continuously using this appara-
tus. The advantage of this apparatus is its simplicity in operation and measurement, easy control of combi-
nation of normal and shear stresses and possible measurement of large shear deformation in case of a test
of preexisted fracture (for more information, please see the Mitani et al. [2005] and Sharifzadeh [2005]).

3.2.1. Mechanical Testing Unit
The mechanical testing unit consists of normal and shear loading unit. Direct shear loading unit consists of
a shear box with upper and lower parts. The fracture is set in the shear box and sheared by moving the
lower part of shear box. The upper part of the shear box is connected by a pair of tie rods to a horizontal
jack which allows the upper part to move vertically and rotate, but the horizontal movement is restricted.
Two tensile-compressive load cells, used for measuring shear load, are set in the tie rods to both horizontal
sides of the shear box. Shear loads can be arbitrarily applied on the fracture by a servo-control system.
Shear displacement is measured by a strain transducer with resolution of 1023 strain/mm and precision of
1022 strain 6 0.1% installed between the horizontal jack and the upper shear box.

The normal loading unit has two normal tie rods with normal loading jacks and load cells to supply low to
high normal stresses and control the inclination of the upper shear box. Normal and shear loads controlled
independently by two separate servo systems. Normal displacements during shear of specimen are meas-
ured by four displacement transducers attached on each corner of the upper shear box. Both load and dis-
placements in the normal and shear directions from load cells and transducers, respectively, are
automatically recorded by data loggers.

3.2.2. Hydraulic Testing Unit
The hydraulic testing unit consists of fracture sealing system, inlet water supply into the fracture, discharged
outlet water collection, and measurement system. This testing unit has been developed for one-
dimensional flow experiments (with constant head) through rock fracture undergoing normal or shear load-
ing. Therefore, lateral sides of the specimen must be sealed during flow tests. The perspective view of the
sealing system of fracture specimen is shown in Figure 2c. A special rubber material, so-called ‘‘gel sheet’’ is
placed on all sides of the fractured specimen to prevent water leakage during flow test.

Inlet water is supplied over the entire width of the fracture specimen. Inlet water head, or pressure, is regu-
lated through the pressure gauge according to required for constant head hydraulic test. Before injecting
water into the fracture, the air bubbles in inlet water tank are removed by using vacuum pump. During the
test, water pressure is recorded by data logger within defined time intervals of 5 s. Water discharge from
outlet is collected over the entire width of fracture. Flow rates are measured using an electric balance with
precision of 0.01 g. All the measured data from different pressure transducer (DPT) or electric balance are
recorded with a data logger system (every 5 s) and saved on personal computer.

3.3. Experimental Procedure
The coupled shear-flow tests were conducted on three different fracture specimens CI, CII, and CIII under
constant normal stresses of 1, 3, and 5 MPa, respectively. Direct shear tests were performed based on con-
trolling shear displacement. Shear displacement was applied with a rate of 0.1 mm/min up to the maximum
displacement of 20 mm. Normal displacement and shear stress were continuously recorded with 0.05 mm
of shear displacement increments. Constant head hydraulic tests were performed stepwise with 0.5, 1, and
5 mm of shear displacement increments depending on the sensitivity and importance of shear phases.
Steady-state fluid flow rate throughout the joint was measured at each shearing step by keeping the normal
stress and shear displacement constant. Various hydraulic tests were performed with different pressure
drops between fracture inlet and outlet ranging from 3.6 to 30 kPa. For CIII specimen, the upper limit of
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pressure drop extended to 54 kPa for the first 2 mm shear displacements due to the higher normal stress
applied on the specimen. Each flow test starts with regulation of inlet water pressure. Then, the water inlet
valve is opened to flow water through the fracture. Flow test is continually performed for a proper time until
reaching a constant flow rate to achieve steady-state condition.

4. Results

4.1. Mechanical Behavior
Three different fracture specimens CI, CII, and CIII under constant normal stresses of 1, 3, and 5 MPa, respec-
tively, were used for coupled shear-flow tests. Variation of shear stress with respect to shear displacement
under constant normal stress for all cases is shown in Figure 3. For all the cases, shear stress increases
quickly from zero to peak stress highly depending on the applied normal stress. The peak shear stress for
CI, CII, and CIII are 0.882, 5.724, and 8.386 MPa, respectively. By increasing normal stress, the shear stress
reaches the peak value at smaller shear displacement where the peak shear stress observes in shear dis-
placement of 2.98, 2.046, and 1.968 mm for CI, CII, and CIII, respectively. This means that shear stiffness
increases with increasing the applied normal stress. After peak, the shear stress falls suddenly for CII and CIII
and decreases gradually to reach the residual. During residual region, shear displacements are continued
with stick-slip phenomena. But for CI, shear stress follows by a gradual decrease after peak. Moreover, differ-
ence between peak and residual shear stresses increases with increasing the applied normal stress.

Figure 4 shows the shear displacement versus normal displacement of fractures during direct shear. Normal
displacement was calculated as arithmetic mean of the values recorded by four displacement transducers.
As shown in Figure 4, fracture normal displacement during shear shows a nonlinear descending-ascending
behavior. As shear stress is applied, fractures experience negative normal displacement or closure due to
the surfaces interlocking. In initial closure region, fracture normal displacement continues to decrease until
reaches its minimum. The minimum normal displacements for CI, CII, and CIII are 20.0175, 20.014, and
20.017 mm, respectively. The corresponding shear displacements of minimum normal displacement for CI,
CII, and CIII are 1.207, 0.914, and 0.856 mm, respectively, decreasing with increasing the applied normal
stress. Fracture normal displacement begins to increase with starting linear prepeak phase and reaches the
zero value at shear displacement of 1.43, 1.73, and 1.353 mm for CI, CII, and CIII, respectively.

As shown in Figure 4, the normal displacements corresponding to peak shear stress for CI, CII, and CIII are
0.267, 0.131, and 0.104 mm, respectively, decreasing with increasing the applied normal stress. The rate of
normal displacement increment reaches to maximum after peak shear stress, and then decreases steadily
until approaches to a constant value. Comparison of the rate of normal displacement increment after peak
shear stress shows that the highest rate occurs for CI, and the lowest is for CIII. Moreover, the fracture nor-
mal displacement corresponding to residual step decreases with increasing the applied normal stress,
where the smallest and largest fracture normal displacements at shear displacement of 20 mm are observed
for CIII and CI, respectively.

4.2. Nonlinear Fluid Flow
During shear processes of fractures, one-dimensional steady-state flow tests were performed stepwise with
0.5, 1, and 5 mm of shear displacement increments. At each shearing step, several hydraulic tests were

Figure 3. Shear stress versus shear displacement of fracture specimens during direct shear under constant normal stress: (a) CI, (b) CII, and (c) CIII (note that the vertical axes are not in
the same scale).

Water Resources Research 10.1002/2013WR014610

JAVADI ET AL. VC 2014. American Geophysical Union. All Rights Reserved. 1796



performed with different pressure gradients between fracture inlet and outlet. Results of these hydraulic
tests were used for investigating the nonlinear flow. At each shearing step, quadratic polynomial regression
in the form of equation (4b) was fitted to the result of hydraulic tests and the coefficients A and B were cal-
culated. To reach a polynomial in the form of equation (4b), the intercept was set to be zero for quadratic
polynomial regression. The quadratic polynomial regression was properly fitted to the experimental results.
An exception to this was the data measured for CIII at zero shear displacement. This data was found to be
erratic in scattering possibly because of measurement errors and therefore was not considered in the
analysis.

The results of quadratic polynomial regression provide a good accuracy, where the residual squared R2 is
greatest 0.99 for all shearing steps in the cases of CI and CIII. For CII, the quadratic polynomial regression

provides R2 about 0.921, 0.973,
and 0.957 for shear displace-
ments of 2, 3, and 5 mm, respec-
tively. Other results for CIII give
R2 greatest 0.99. Figure 5 shows
the quadratic polynomial regres-
sion for hydraulic tests, for
instance, on CII in 4 mm shear
displacement. The fitted quad-
ratic polynomial expression in
the form of the Forchheimer’s
law consists of a linear term (AQ)
and a nonlinear term (BQ2)
describing viscous and inertial
pressure drops, respectively. The
role of linear and nonlinear terms
in overall pressure drop (or pres-
sure gradient) is shown in Figure
5. At low flow rates, both the For-
chheimer’s law and linear term

Figure 4. Normal displacement versus shear displacement of fractures during shear under constant normal stress: (a) CI, (b) CII, and (c) CIII.

Figure 5. The role of linear and nonlinear terms in overall pressure drop and quadratic
polynomial regression for hydraulic tests (Results from CII in 4 mm shear displacement).
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propose close pressure drops. Since the Forchheimer’s law successfully reduces to Darcy’s law at low flow
rates, it can be applied over the entire range of flow rates. By increasing flow rate or Reynolds number, devi-
ation from the linearity in flow through fracture becomes more evident and inertial pressure drop cannot
be neglected with regard to viscous pressure drop.

At each shearing step, the coefficients A and B were calculated using quadratic polynomial regression. Fig-
ure 6 shows variation of the coefficient A during shear. As shown in Figure 6, the coefficient A experiences
about 4 orders of magnitude reduction during shear. For CI, the coefficient A shows a descending variation
during shear. As shown in Figure 6a, the coefficient A falls suddenly in shear displacement between 1 and
1.5 mm, where it decreases about 4 orders of magnitude. After shear displacement of 1.5 mm, the coeffi-
cient A decreases gradually to attain a somewhat constant value for shear displacements exceeding 5 mm.
For CII and CIII, the coefficient A shows an ascending-descending variation during shear. The coefficient A
for both CII and CIII reaches its maximum at shear displacement of about 1 mm and falls suddenly after 1.5
mm shear displacement. After shear displacement of about 3 mm, the coefficient A decreases gradually to
attain a somewhat constant value for shear displacements exceeding about 7 and 10 mm for CII and CIII,
respectively.

Variation of coefficient B during shear processes is shown in Figure 7. The coefficient B shows a descending
variation for CI and CIII, and an ascending-descending variation for CII. The coefficient B shows an abrupt
reduction during the prepeak regions (for shear displacements between 1 and 2 mm). The reduction rate of
the coefficient B decreases after shear displacement of about 3 mm. From Figures 6 and 7, it can be found
that the variation pattern of coefficients A and B are very similar. However, the reduction rate of the coeffi-
cient B is much higher than A. Figure 7 shows that the coefficient B experiences about 7 orders of magni-
tude reduction during shear.

At each shearing step, the critical Reynolds number was calculated using CFN model by considering a 5 0.1.
Variation of critical Reynolds number during shear is shown in Figure 8. As shown in Figure 8, the critical
Reynolds number experiences about 4 orders of magnitude enlarging by increasing shear displacement
from 0 to 20 mm. For all the cases and shear displacements lower than 1 mm, the critical Reynolds number
is lower than 0.04. The critical Reynolds number shows an ascending variation for CI and CIII. For CI, the criti-
cal Reynolds number shows an enormous increase for shear displacements between 1 and 1.5 mm and

Figure 6. Variation of the coefficient A during shear: (a) CI, (b) CII, and (c) CIII.

Figure 7. Variation of the coefficient B during shear: (a) CI, (b) CII, and (c) CIII.
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attains a somewhat constant value in the range of 25 for shear displacements exceeding 3 mm. For CIII, the
critical Reynolds number increases almost consistently by increasing shear displacement and reaches a
somewhat constant value in the range of 15 for shear displacements exceeding 5 mm. As shown in Figure
8b, the critical Reynolds number shows a descending-ascending variation for CII. For this case, the critical
Reynolds number falls from 0.004 to 0.001 for shear displacements from 0 to 1 mm. After shear displace-
ment of 1 mm, the critical Reynolds number increases gradually to attain a somewhat constant value for
shear displacements exceeding 15 mm (Figure 8b).

5. Discussion

It is well clear that, fracture geometry and surface roughness play a key role in the both hydraulic and
mechanical characteristic of rock fractures. A typical natural fracture in rock masses consists of two rough-
walled surfaces with complex morphology varies over the fracture. Therefore, regardless of the fracture size,
the aperture distribution always has a strong heterogeneity due to a wide range of the aperture and a sig-
nificant number of the contact points [Tsang, 1984; Witherspoon et al., 1980; Xiong et al., 2011]. When fluid
flows through such a fracture, it not only flows around the contact areas, but also has a tendency to flow
through the channels with the largest apertures [Archambault et al., 1997; Brown, 1987; Li et al., 2008; Neuzil
and Tracy, 1981; Tsang and Tsang, 1987; Watanabe et al., 2008]. Since the flow occurs over a few tortuous
channels, the hydraulic behavior of fracture would be controlled by the small apertures and constrictions
[Tsang and Tsang, 1987; Neuzil and Tracy, 1981]. The structure of the aperture field is strongly related to the
relative position of the fracture surfaces together with the statistical distribution of the asperities [Auradou,
2009]. Due to the roughness of the fracture surfaces, the shear displacement is accompanied with two main
features including dilation and lateral mismatching of surfaces [Esaki et al., 1999]. Both of these features
remarkably change the fracture geometry and its attributes such as contact ratio, relative roughness, and
spatial distribution of aperture [Sharifzadeh et al., 2006]. Due to the changes in the shape of the aperture
distribution, contact area, and degree of mismatching governing by shear process, significant variations are
expected in the coefficients A and B and the critical Reynolds number as a result.

Nonlinearity of fluid flow may occur as a result of inertial losses arising from entrance and exit losses,
changes in flow velocity or direction along the flow path, and localized eddy formation. Such inertial losses
are generally proportional to the square of the fluid velocity [Schrauf and Evans, 1986] and form the reper-
cussion of the coefficient B. Rapid changes in the aperture along the flow path will necessitate prompt var-
iations in the inplane velocity, in order to maintain conservation of mass that causes acceleration and
deceleration of the flow. These repeated acceleration and deceleration sequences cause a departure from a
linear relationship between pressure drop and flow rate, even if the flow remains laminar [Cornwell and Mur-
phy, 1985]. The magnitude of the effect of tortuosity in depressing fluid flow rate varies with the shape of
the aperture distribution [Tsang, 1984]. Shear displacement reduces the degree of matedness between the
two fracture surfaces and, as a result, the magnitudes of the components of an aperture with low frequen-
cies (large wavelengths) increase relative to those with high frequencies, particularly for small fractures.
Thus, the probability of the connectivity of large apertures greatly increases with shear displacement and,
accordingly, channels may be easily created in sheared fractures [Matsuki et al., 2006]. On the other hand,

Figure 8. Critical Reynolds number during shear: (a) CI, (b) CII, and (c) CIII (the critical Reynolds number was calculated using NCF model by considering a 5 0.1).
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by increasing shear displacement, the shear induced new contact areas decrease slowly and the number of
contact spots becomes much smaller and focused at a much fewer locations of larger areas of contact
[Koyama et al., 2009]. The localization of water flow in a sheared fracture thus occurs due to the fact that a
smaller number of channels and ridges with a greater area are formed as the shear displacement increases
[Matsuki et al., 2005]. Therefore, when the fracture walls have undergone a shear displacement, high aper-
ture channels with reduced hydraulic resistance (or coefficients A and B) develop in the fracture plane.

Since in initial closure phase two fracture surfaces are settled and interlocked, the fracture experiences clo-
sure with increasing contact area. These effects reduce the open space through which flow takes place and
thereby yields significant decrease in fracture conductivity or increase in the coefficients A and B. As shown
in Figure 6, the coefficient A shows an ascending behavior for CII and CIII in initial closure phase that con-
firms this physical process. However, the coefficient A shows a descending behavior for CI in initial closure
phase. This inconsistent result possibly comes from the flow test procedure performed stepwise. Since the
hydraulic tests were performed stepwise with 0.5 m shear displacement increments, the actual hydraulic
behavior of fracture between consecutive shear displacement steps will be unexplored, especially when
much variation of normal displacement occurs between consecutive steps. However, it is anticipated that
the coefficient A increases in initial closure phase. Such increase is also anticipated for coefficient B variation
in this phase. The ascending variation of coefficient B for CII in initial closure region justifies this postulation.
But the coefficient B shows a descending behavior for CI in initial closure phase that possibly comes from
the stepwise flow test procedure.

After linear prepeak phase, the shear processes attend by fracture dilation and damages in high-order
asperities that lead increase in aperture and decrease in relative roughness and contact area. All these
events associate with less deviation from the idealized flow between parallel plates, decreasing abrupt
changes in the aperture along the flow path, decreasing the flow tortuosity, and less fluid velocity distur-
bances and eddying. These physical presences attain cause less pressure drops and thus significant reduc-
tion in flow resistance or decrease in the coefficients A and B. The intensity of the above geometrical events
is much at nonlinear prepeak phase, decreasing with increasing shear displacement to reaches somewhat
negligible in residual region. As shown in Figures 6 and 7, immediately after linear prepeak phase, both the
coefficients A and B show an abrupt reduction. After nonlinear prepeak phase, both the coefficients A and B
decrease gradually to attain a somewhat constant value in residual region. Moreover, the variation pattern
of coefficients A and B are very similar but the reduction rate of the coefficient B is much higher than A. The
coefficients A and B experience about 7 and 4 orders of magnitude reduction, respectively, during shear.
From CFN model, it can be found that the critical Reynolds number is proportional to the ratio of A to B.
Since the coefficient B experiences considerably much reduction than A, the critical Reynolds number
embraces enormous enlargement during the shear processes.

The laminar flow through rock fracture is usually assumed a linear relationship between the flux and the
pressure gradient that comes from the diminishing the inertia effects. Clearly, at sufficiently high flow rates,
this relationship becomes nonlinear. It should be noted that deviations from linear relationship between
flow rate and pressure drop are often attributed, perhaps erroneously, to turbulence. Although the intense
flow nonlinearity may imply the turbulency on flow, the term ‘‘nonlinearity’’ of flow is only used in this paper
for describing the deviations from linear relationship between flow rate and pressure drop and it does not
mean that the flow regime is turbulent. Generally, the onset of flow transition to nonlinear can be character-
ized by two different dimensionless numbers known as Forchheimer number and Reynolds number. It
should be noted that the Reynolds number quantifies the relative strength of inertia forces as compared to
viscous forces at microscopic level. Microscopic inertial effects do not directly infer to macroscopic inertial
effects, where high value of local or microscopic Reynolds number does not necessarily deduce nonlinear
flow at macroscopic level. In fact, the effects of heterogeneities in the fracture geometry (spatial distribution
of aperture and contact area) are not considered in the Reynolds number. Therefore, the critical Reynolds
number is closely dependent to geometrical attributes of fracture (such as contact ratio, relative roughness,
aperture, and matedness), and easily changes dramatically with variation of such attributes. Although the
Reynolds number has been widely used for characterization of nonlinear flow through rough-walled frac-
tures, a diversified amount of critical Reynolds numbers has been suggested for fractures that makes a con-
fused condition for practical purposes. Therefore, in practical purposes, an intelligent attention should be
considered about the role of geometrical attributes of fracture on the Reynolds number. Since Forchheimer
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number accounts the structure of the medium, it may suggest a better indication of the degree of inertial
effects on flow than Reynolds number [Garrouch and Ali, 2001; Ruth and Ma, 1992; Zeng and Grigg, 2006].
The proposed CFN model combines both the Reynolds and Forchheimer numbers and therefore, it provides
a more meaningful criterion for identifying nonlinear flow through rough-walled fractures.

6. Conclusions

This paper experimentally explains the role of shearing on the variation of critical Reynolds numbers and
nonlinearity of fluid flow through rough-walled rock fractures. First, a quantitative criterion, CFN model, was
developed to quantify the onset of flow nonlinearity by comprehensive combination of Forchheimer’s law
and Reynolds number. Hydromechanical laboratory experiments were performed on different initially
closely mated rock fractures undergoing shear to evaluate the effect of mechanical displacements on the
flow nonlinearity and critical Reynolds number. At each shearing step, the critical Reynolds number was
determined using the CFN model and quadratic polynomial regression in the form of Forchheimer’s law
that was fitted to the results of hydraulic tests with different pressure gradients. Finally, the variation of criti-
cal Reynolds number with shear processes was evaluated using mechanical behavior of fractures. Based on
the presented results, the following conclusions were obtained:

1. The Forchheimer’s law was fitted very well to experimental results of nonlinear flow through rough-
walled fractures undergoing shear. The quadratic polynomial in the form of the Forchheimer’s law consists
of a linear term (AQ) and a nonlinear term (BQ2) describing viscous and inertial pressure drops, respectively.

2. The Forchheimer’s law successfully reduces to Darcy’s law at low flow rates and it can be applied over the
entire range of flow rates. By increasing flow rate, deviation from the linearity in flow through the fracture
becomes more evident and inertial pressure drop cannot be neglected with regard to viscous pressure drop.

3. The linear and nonlinear pressure drops highly depend on the fracture geometry that involves sever dis-
turbances during forward shear displacement. The coefficient A and B experience about 4 and 7 orders of
magnitude reduction, respectively, during shear. The variation patterns of coefficients A and B are very simi-
lar but the reduction rate of the coefficient B is much higher than A.

4. The CFN model combines both the Reynolds and Forchheimer numbers that can provide a more mean-
ingful criterion for identifying nonlinear flow through rough-walled fractures. From CFN model, the critical
Reynolds number is proportional to the ratio of A to B mainly dependent on the fracture geometry.

5. The critical Reynolds number experiences 4 orders of magnitude enlargement by increasing shear dis-
placement from 0 to 20 mm. For all the cases and shear displacements lower than 1 mm, the critical Reyn-
olds number is lower than 0.04. The critical Reynolds number shows an enormous increase during prepeak
phases and attains a somewhat constant value in the range of 15–25 in residual region.

It is tried in this paper to explain the role of shearing processes on the nonlinearity of fluid flow through
rough-walled rock fractures. The results of this study represent the first step toward the understanding the
nonlinear fluid flow through tough-walled fractures. Clearly, much research remains to be inspected to this
class of problems, particularly to investigation of the physical nature of nonlinear flow and flow regimes,
the role of fracture geometry on the three-dimensional flow field, variation of geometrical characteristics of
rock fracture during different loading conditions, flow anisotropy in respect to shear direction, and correla-
tions and scale dependency.
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