71 research outputs found

    Glucocorticoids promote Von Hippel Lindau degradation and Hif-1α stabilization

    Get PDF
    Glucocorticoid (GC) and hypoxic transcriptional responses play a central role in tissue homeostasis and regulate the cellular response to stress and inflammation, highlighting the potential for cross-talk between these two signaling pathways. We present results from an unbiased in vivo chemical screen in zebrafish that identifies GCs as activators of hypoxia-inducible factors (HIFs) in the liver. GCs activated consensus hypoxia response element (HRE) reporters in a glucocorticoid receptor (GR)-dependent manner. Importantly, GCs activated HIF transcriptional responses in a zebrafish mutant line harboring a point mutation in the GR DNA-binding domain, suggesting a nontranscriptional route for GR to activate HIF signaling. We noted that GCs increase the transcription of several key regulators of glucose metabolism that contain HREs, suggesting a role for GC/HIF cross-talk in regulating glucose homeostasis. Importantly, we show that GCs stabilize HIF protein in intact human liver tissue and isolated hepatocytes. We find that GCs limit the expression of Von Hippel Lindau protein (pVHL), a negative regulator of HIF, and that treatment with the c-src inhibitor PP2 rescued this effect, suggesting a role for GCs in promoting c-src–mediated proteosomal degradation of pVHL. Our data support a model for GCs to stabilize HIF through activation of c-src and subsequent destabilization of pVHL

    Human liver sinusoidal endothelial cells promote intracellular crawling of lymphocytes during recruitment: A new step in migration

    Get PDF
    The recruitment of lymphocytes via the hepatic sinusoidal channels and positioning within liver tissue is a critical event in the development and persistence of chronic inflammatory liver diseases. The hepatic sinusoid is a unique vascular bed lined by hepatic sinusoidal endothelial cells (HSECs), a functionally and phenotypically distinct subpopulation of endothelial cells. Using flow-based adhesion assays to study the migration of lymphocytes across primary human HSECs, we found that lymphocytes enter into HSECs, confirmed by electron microscopy demonstrating clear intracellular localization of lymphocytes in vitro and by studies in human liver tissues. Stimulation by interferon-γ increased intracellular localization of lymphocytes within HSECs. Furthermore, using confocal imaging and time-lapse recordings, we demonstrated "intracellular crawling" of lymphocytes entering into one endothelial cell from another. This required the expression of intracellular adhesion molecule-1 and stabilin-1 and was facilitated by the junctional complexes between HSECs. Lymphocyte migration is facilitated by the unique structure of HSECs. Intracellular crawling may contribute to optimal lymphocyte positioning in liver tissue during chronic hepatitis. (Hepatology 2017;65:294-309). CONCLUSIO

    Paracrine signals from liver sinusoidal endothelium regulate hepatitis C virus replication

    Get PDF
    Hepatitis C virus (HCV) is a major cause of global morbidity, causing chronic liver injury that can progress to cirrhosis and hepatocellular carcinoma. The liver is a large and complex organ containing multiple cell types, including hepatocytes, sinusoidal endothelial cells (LSEC), Kupffer cells, and biliary epithelial cells. Hepatocytes are the major reservoir supporting HCV replication; however, the role of nonparenchymal cells in the viral lifecycle remains largely unexplored. LSEC secrete factors that promote HCV infection and transcript analysis identified bone morphogenetic protein 4 (BMP4) as a candidate endothelial-expressed proviral molecule. Recombinant BMP4 increased HCV replication and neutralization of BMP4 abrogated the proviral activity of LSEC-conditioned media. Importantly, BMP4 expression was negatively regulated by vascular endothelial growth factor A (VEGF-A) by way of a VEGF receptor-2 (VEGFR-2) primed activation of p38 MAPK. Consistent with our in vitro observations, we demonstrate that in normal liver VEGFR-2 is activated and BMP4 expression is suppressed. In contrast, in chronic liver disease including HCV infection where there is marked endothelial cell proliferation, we observed reduced endothelial cell VEGFR-2 activation and a concomitant increase in BMP4 expression. Conclusion: These studies identify a role for LSEC and BMP4 in HCV infection and highlight BMP4 as a new therapeutic target for treating individuals with liver disease

    Identification of cyclins A1, E1 and vimentin as downstream targets of heme oxygenase-1 in vascular endothelial growth factor-mediated angiogenesis

    Get PDF
    Angiogenesis is an essential physiological process and an important factor in disease pathogenesis. However, its exploitation as a clinical target has achieved limited success and novel molecular targets are required. Although heme oxygenase-1 (HO-1) acts downstream of vascular endothelial growth factor (VEGF) to modulate angiogenesis, knowledge of the mechanisms involved remains limited. We set out identify novel HO-1 targets involved in angiogenesis. HO-1 depletion attenuated VEGF-induced human endothelial cell (EC) proliferation and tube formation. The latter response suggested a role for HO-1 in EC migration, and indeed HO-1 siRNA negatively affected directional migration of EC towards VEGF; a phenotype reversed by HO-1 over-expression. EC from Hmox1(-/-) mice behaved similarly. Microarray analysis of HO-1-depleted and control EC exposed to VEGF identified cyclins A1 and E1 as HO-1 targets. Migrating HO-1-deficient EC showed increased p27, reduced cyclin A1 and attenuated cyclin-dependent kinase 2 activity. In vivo, cyclin A1 siRNA inhibited VEGF-driven angiogenesis, a response reversed by Ad-HO-1. Proteomics identified structural protein vimentin as an additional VEGF-HO-1 target. HO-1 depletion inhibited VEGF-induced calpain activity and vimentin cleavage, while vimentin silencing attenuated HO-1-driven proliferation. Thus, vimentin and cyclins A1 and E1 represent VEGF-activated HO-1-dependent targets important for VEGF-driven angiogenesis.National Heart and Lung Institute Foundation UK charity studentship: (Charity no. 1048073); National Institute for Health Research (NIHR); Biomedical Research Centre; Imperial College Healthcare NHS; Trust and Imperial College London

    Passport, a native Tc1 transposon from flatfish, is functionally active in vertebrate cells

    Get PDF
    The Tc1/mariner family of DNA transposons is widespread across fungal, plant and animal kingdoms, and thought to contribute to the evolution of their host genomes. To date, an active Tc1 transposon has not been identified within the native genome of a vertebrate. We demonstrate that Passport, a native transposon isolated from a fish (Pleuronectes platessa), is active in a variety of vertebrate cells. In transposition assays, we found that the Passport transposon system improved stable cellular transgenesis by 40-fold, has an apparent preference for insertion into genes, and is subject to overproduction inhibition like other Tc1 elements. Passport represents the first vertebrate Tc1 element described as both natively intact and functionally active, and given its restricted phylogenetic distribution, may be contemporaneously active. The Passport transposon system thus complements the available genetic tools for the manipulation of vertebrate genomes, and may provide a unique system for studying the infiltration of vertebrate genomes by Tc1 elements

    Breakingtheice: A protocol for a randomised controlled trial of an internet-based intervention addressing amphetamine-type stimulant use

    Get PDF
    Background: The prevalence of amphetamine-type stimulant use is greater than that of opioids and cocaine combined. Currently, there are no approved pharmacotherapy treatments for amphetamine-type stimulant problems, but some face-to-face psychotherapies are of demonstrated effectiveness. However, most treatment services focus on alcohol or opioid disorders, have limited reach and may not appeal to users of amphetamine-type stimulants. Internet interventions have proven to be effective for some substance use problems but none has specifically targeted users of amphetamine-type stimulants. Design/method: The study will use a randomized controlled trial design to evaluate the effect of an internet intervention for amphetamine-type stimulant problems compared with a waitlist control group. The primary outcome will be assessed as amphetamine-type stimulant use (baseline, 3 and 6 months). Other outcomes measures will include ‘readiness to change’, quality of life, psychological distress (K-10 score), days out of role, poly-drug use, help-seeking intention and help-seeking behavior. The intervention consists of three modules requiring an estimated total completion time of 90 minutes. The content of the modules was adapted from face-to-face clinical techniques based on cognitive behavior therapy and motivation enhancement. The target sample is 160 men and women aged 18 and over who have used amphetamine-type stimulants in the last 3 months. Discussion: To our knowledge this will be the first randomized controlled trial of an internet intervention specifically developed for users of amphetamine-type stimulants. If successful, the intervention will offer greater reach than conventional therapies and may engage clients who do not generally seek treatment from existing service providers

    Modelling Human Regulatory Variation in Mouse: Finding the Function in Genome-Wide Association Studies and Whole-Genome Sequencing

    Get PDF
    An increasing body of literature from genome-wide association studies and human whole-genome sequencing highlights the identification of large numbers of candidate regulatory variants of potential therapeutic interest in numerous diseases. Our relatively poor understanding of the functions of non-coding genomic sequence, and the slow and laborious process of experimental validation of the functional significance of human regulatory variants, limits our ability to fully benefit from this information in our efforts to comprehend human disease. Humanized mouse models (HuMMs), in which human genes are introduced into the mouse, suggest an approach to this problem. In the past, HuMMs have been used successfully to study human disease variants; e.g., the complex genetic condition arising from Down syndrome, common monogenic disorders such as Huntington disease and β-thalassemia, and cancer susceptibility genes such as BRCA1. In this commentary, we highlight a novel method for high-throughput single-copy site-specific generation of HuMMs entitled High-throughput Human Genes on the X Chromosome (HuGX). This method can be applied to most human genes for which a bacterial artificial chromosome (BAC) construct can be derived and a mouse-null allele exists. This strategy comprises (1) the use of recombineering technology to create a human variant–harbouring BAC, (2) knock-in of this BAC into the mouse genome using Hprt docking technology, and (3) allele comparison by interspecies complementation. We demonstrate the throughput of the HuGX method by generating a series of seven different alleles for the human NR2E1 gene at Hprt. In future challenges, we consider the current limitations of experimental approaches and call for a concerted effort by the genetics community, for both human and mouse, to solve the challenge of the functional analysis of human regulatory variation

    Plasma–liquid interactions: a review and roadmap

    Get PDF
    Plasma–liquid interactions represent a growing interdisciplinary area of research involving plasma science, fluid dynamics, heat and mass transfer, photolysis, multiphase chemistry and aerosol science. This review provides an assessment of the state-of-the-art of this multidisciplinary area and identifies the key research challenges. The developments in diagnostics, modeling and further extensions of cross section and reaction rate databases that are necessary to address these challenges are discussed. The review focusses on non-equilibrium plasmas
    corecore