40 research outputs found

    The far-infrared view of M87 as seen by the Herschel Space Observatory

    Full text link
    The origin of the far-infrared emission from the nearby radio galaxy M87 remains a matter of debate. Some studies find evidence of a far-infrared excess due to thermal dust emission, whereas others propose that the far-infrared emission can be explained by synchrotron emission without the need for an additional dust emission component. We observed M87 with PACS and SPIRE as part of the Herschel Virgo Cluster Survey (HeViCS). We compare the new Herschel data with a synchrotron model based on infrared, submm and radio data to investigate the origin of the far-infrared emission. We find that both the integrated SED and the Herschel surface brightness maps are adequately explained by synchrotron emission. At odds with previous claims, we find no evidence of a diffuse dust component in M87.Comment: 4 pages, 2 figures, proceedings IAU Symposium 275 (Jets at all scales

    The Herschel Virgo Cluster Survey: IV. Resolved dust analysis of spiral galaxies

    Get PDF
    We present a resolved dust analysis of three of the largest angular size spiral galaxies, NGC 4501 and NGC 4567/8, in the Herschel Virgo Cluster Survey (HeViCS) Science Demonstration field. Herschel has unprecedented spatial resolution at far-infrared wavelengths and with the PACS and SPIRE instruments samples both sides of the peak in the far infrared spectral energy distribution (SED).We present maps of dust temperature, dust mass, and gas-to-dust ratio, produced by fitting modified black bodies to the SED for each pixel. We find that the distribution of dust temperature in both systems is in the range ~19 - 22 K and peaks away from the centres of the galaxies. The distribution of dust mass in both systems is symmetrical and exhibits a single peak coincident with the galaxy centres. This Letter provides a first insight into the future analysis possible with a large sample of resolved galaxies to be observed by Herschel.Comment: Letter accepted for publication in A&A (Herschel special issue

    The Herschel Virgo Cluster Survey: I. Luminosity functions

    Get PDF
    We describe the Herschel Virgo Cluster Survey (HeViCS) and the first data obtained as part of the Science Demonstration Phase (SDP). The data cover a central 4x4 sq deg region of the cluster. We use SPIRE and PACS photometry data to produce 100, 160, 250, 350 and 500 micron luminosity functions (LFs) for optically bright galaxies that are selected at 500 micron and detected in all bands. We compare these LFs with those previously derived using IRAS, BLAST and Herschel-ATLAS data. The Virgo Cluster LFs do not have the large numbers of faint galaxies or examples of very luminous galaxies seen previously in surveys covering less dense environments.Comment: Letter accepted for publication in A&A (Herschel special issue

    The Herschel Virgo Cluster Survey: II. Truncated dust disks in HI-deficient spirals

    Get PDF
    By combining Herschel-SPIRE observations obtained as part of the Herschel Virgo Cluster Survey with 21 cm HI data from the literature, we investigate the role of the cluster environment on the dust content of Virgo spiral galaxies.We show for the first time that the extent of the dust disk is significantly reduced in HI-deficient galaxies, following remarkably well the observed 'truncation' of the HI disk. The ratio of the submillimetre-to- optical diameter correlates with the HI-deficiency, suggesting that the cluster environment is able to strip dust as well as gas. These results provide important insights not only into the evolution of cluster galaxies but also into the metal enrichment of the intra-cluster medium.Comment: Letter accepted for publication in A&A (Herschel special issue

    The Herschel Virgo Cluster Survey: VI. The far-infrared view of M87

    Get PDF
    The origin of the far-infrared emission from the nearby radio galaxy M87 remains a matter of debate. Some studies find evidence of a far-infrared excess due to thermal dust emission, whereas others propose that the far-infrared emission can be explained by synchrotron emission without the need for an additional dust emission component. We present Herschel PACS and SPIRE observations of M87, taken as part of the science demonstration phase observations of the Herschel Virgo Cluster Survey. We compare these data with a synchrotron model based on mid-infrared, far-infrared, submm and radio data from the literature to investigate the origin of the far-infrared emission. Both the integrated SED and the Herschel surface brightness maps are adequately explained by synchrotron emission. At odds with previous claims, we find no evidence of a diffuse dust component in M87, which is not unexpected in the harsh X-ray environment of this radio galaxy sitting at the core of the Virgo Cluster.Comment: Letter accepted for publication in A&A (Herschel special issue

    The Herschel Virgo cluster survey: V. Star-forming dwarf galaxies - dust in metal-poor environments

    Get PDF
    We present the dust properties of a small sample of Virgo cluster dwarf galaxies drawn from the science demonstration phase data set of the Herschel Virgo Cluster Survey. These galaxies have low metallicities (7.8 < 12 + log(O/H) < 8.3) and star-formation rates < 10^{-1} M_{sun}/yr. We measure the spectral energy distribution (SED) from 100 to 500 um and derive dust temperatures and dust masses. The SEDs are fitted by a cool component of temperature T < 20 K, implying dust masses around 10^{5} M_{sun} and dust-to-gas ratios D within the range 10^{-3}-10^{-2}. The completion of the full survey will yield a larger set of galaxies, which will provide more stringent constraints on the dust content of star-forming dwarf galaxies.Comment: Letter accepted for publication in A&A (Herschel special issue

    The Herschel Virgo Cluster Survey: VII. Dust in cluster dwarf elliptical galaxies

    Get PDF
    We use the Science Demonstration Phase data of the Herschel Virgo Cluster Survey to search for dust emission of early-type dwarf galaxies in the central regions of the Virgo Cluster as an alternative way of identifying the interstellar medium.We present the first possible far-infrared detection of cluster early-type dwarf galaxies: VCC781 and VCC951 are detected at the 10 sigma level in the SPIRE 250 micron image. Both detected galaxies have dust masses of the order of 10^5 Msun and average dust temperatures ~20K. The detection rate (less than 1%) is quite high compared to the 1.7% detection rate for Hi emission, considering that dwarfs in the central regions are more Hi deficient. We conclude that the removal of interstellar dust from dwarf galaxies resulting from ram pressure stripping, harassment, or tidal effects must be as efficient as the removal of interstellar gas.Comment: Letter accepted for publication in A&A (Herschel special issue

    ALMA Observations of Asteroid 3 Juno at 60 Kilometer Resolution

    Get PDF
    We present Atacama Large Millimeter/submillimeter Array (ALMA) 1.3 mm continuum images of the asteroid 3 Juno obtained with an angular resolution of 0.042 arcseconds (60 km at 1.97 AU). The data were obtained over a single 4.4 hr interval, which covers 60% of the 7.2 hr rotation period, approximately centered on local transit. A sequence of ten consecutive images reveals continuous changes in the asteroid's profile and apparent shape, in good agreement with the sky projection of the three-dimensional model of the Database of Asteroid Models from Inversion Techniques. We measure a geometric mean diameter of 259pm4 km, in good agreement with past estimates from a variety of techniques and wavelengths. Due to the viewing angle and inclination of the rotational pole, the southern hemisphere dominates all of the images. The median peak brightness temperature is 215pm13 K, while the median over the whole surface is 197pm15 K. With the unprecedented resolution of ALMA, we find that the brightness temperature varies across the surface with higher values correlated to the subsolar point and afternoon areas, and lower values beyond the evening terminator. The dominance of the subsolar point is accentuated in the final four images, suggesting a reduction in the thermal inertia of the regolith at the corresponding longitudes, which are possibly correlated to the location of the putative large impact crater. These results demonstrate ALMA's potential to resolve thermal emission from the surface of main belt asteroids, and to measure accurately their position, geometric shape, rotational period, and soil characteristics.Comment: 8 pages, 3 figures, 2 tables, accepted for publication in the Astrophysical Journal Letter

    ALMA Long Baseline Observations of the Strongly Lensed Submillimeter Galaxy HATLAS J090311.6+003906 at z=3.042

    Get PDF
    We present initial results of very high resolution Atacama Large Millimeter/submillimeter Array (ALMA) observations of the zz=3.042 gravitationally lensed galaxy HATLAS J090311.6+003906 (SDP.81). These observations were carried out using a very extended configuration as part of Science Verification for the 2014 ALMA Long Baseline Campaign, with baselines of up to 15 km. We present continuum imaging at 151, 236 and 290 GHz, at unprecedented angular resolutions as fine as 23 milliarcseconds (mas), corresponding to an un-magnified spatial scale of ~180 pc at z=3.042. The ALMA images clearly show two main gravitational arc components of an Einstein ring, with emission tracing a radius of ~1.5". We also present imaging of CO(10-9), CO(8-7), CO(5-4) and H2O line emission. The CO emission, at an angular resolution of ~170 mas, is found to broadly trace the gravitational arc structures but with differing morphologies between the CO transitions and compared to the dust continuum. Our detection of H2O line emission, using only the shortest baselines, provides the most resolved detection to date of thermal H2O emission in an extragalactic source. The ALMA continuum and spectral line fluxes are consistent with previous Plateau de Bure Interferometer and Submillimeter Array observations despite the impressive increase in angular resolution. Finally, we detect weak unresolved continuum emission from a position that is spatially coincident with the center of the lens, with a spectral index that is consistent with emission from the core of the foreground lensing galaxy.Comment: 9 pages, 5 figures and 3 tables, accepted for publication in the Astrophysical Journal Letter

    First Results from High Angular Resolution ALMA Observations Toward the HL Tau Region

    Get PDF
    We present Atacama Large Millimeter/submillimeter Array (ALMA) observations from the 2014 Long Baseline Campaign in dust continuum and spectral line emission from the HL Tau region. The continuum images at wavelengths of 2.9, 1.3, and 0.87 mm have unprecedented angular resolutions of 0.075 arcseconds (10 AU) to 0.025 arcseconds (3.5 AU), revealing an astonishing level of detail in the circumstellar disk surrounding the young solar analogue HL Tau, with a pattern of bright and dark rings observed at all wavelengths. By fitting ellipses to the most distinct rings, we measure precise values for the disk inclination (46.72pm0.05 degrees) and position angle (+138.02pm0.07 degrees). We obtain a high-fidelity image of the 1.0 mm spectral index (α\alpha), which ranges from α2.0\alpha\sim2.0 in the optically-thick central peak and two brightest rings, increasing to 2.3-3.0 in the dark rings. The dark rings are not devoid of emission, we estimate a grain emissivity index of 0.8 for the innermost dark ring and lower for subsequent dark rings, consistent with some degree of grain growth and evolution. Additional clues that the rings arise from planet formation include an increase in their central offsets with radius and the presence of numerous orbital resonances. At a resolution of 35 AU, we resolve the molecular component of the disk in HCO+ (1-0) which exhibits a pattern over LSR velocities from 2-12 km/s consistent with Keplerian motion around a ~1.3 solar mass star, although complicated by absorption at low blue-shifted velocities. We also serendipitously detect and resolve the nearby protostars XZ Tau (A/B) and LkHa358 at 2.9 mm.Comment: 11 pages, 5 figures, 2 tables, accepted for publication in the Astrophysical Journal Letter
    corecore