The origin of the far-infrared emission from the nearby radio galaxy M87
remains a matter of debate. Some studies find evidence of a far-infrared excess
due to thermal dust emission, whereas others propose that the far-infrared
emission can be explained by synchrotron emission without the need for an
additional dust emission component. We observed M87 with PACS and SPIRE as part
of the Herschel Virgo Cluster Survey (HeViCS). We compare the new Herschel data
with a synchrotron model based on infrared, submm and radio data to investigate
the origin of the far-infrared emission. We find that both the integrated SED
and the Herschel surface brightness maps are adequately explained by
synchrotron emission. At odds with previous claims, we find no evidence of a
diffuse dust component in M87.Comment: 4 pages, 2 figures, proceedings IAU Symposium 275 (Jets at all
scales