6 research outputs found

    Letter of intent for KM3NeT 2.0

    Get PDF

    Optimization of the Coagulation-flocculation Process Using Ferric Chloride and Phosphate for the Reduction of Contaminants in the Slaughterhouses Wastewater

    No full text
    In this work, the coagulation-flocculation process was optimized using ferric chloride and phosphate for the reduction of pollutants in the wastewater from the Conchucos S.A., Lima. Parameters were measured in percentage reduction of chemical oxygen demand (COD), turbidity (NTU) and total phosphorus (PT mg/L), adding ferric chloride as coagulant and potassium dihydrogen phosphate as flocculant. The effects of four independent variables were investigated: ferric chloride dose (500-700 ppm), phosphate dose (700-900 mg/L), fast agitation speed (250-320 rpm) and slow agitation speed (90-100 rpm). The experimental data were optimized by the response surface method using a central composite design. The results show that the statistical models obtained F-values of 3.33, 4.27 and 4.16 for the percent reduction of COD, turbidity and total phosphorus, respectively. Furthermore, the statistical models developed to predict the responses were confirmed by significant probability values (p<0.05). On the fit of the models, an R2 of 0.61, 0.66 and 0.67 are shown for COD, turbidity and total phosphorus percentage, respectively. The optimum conditions were found experimentally at 700 ppm of ferric chloride dose, 900 ppm of phosphate, 320 rpm fast speed and 100 rpm for a reduction of 75.46% of COD, 83.47% of turbidity and 44.08% of total phosphorus presenting a desirability of 0.7

    A method to stabilise the performance of negatively fed KM3NeT photomultipliers

    Get PDF
    OPEN ACCESSInternational audienceThe KM3NeT research infrastructure, currently under construction in the Mediterranean Sea, will host neutrino telescopes for the identification of neutrino sources in the Universe and for studies of the neutrino mass hierarchy. These telescopes will house hundreds of thousands of photomultiplier tubes that will have to be operated in a stable and reliable fashion. In this context, the stability of the dark counts has been investigated for photomultiplier tubes with negative high voltage on the photocathode and held in insulating support structures made of 3D printed nylon material. Small gaps between the rigid support structure and the photomultiplier tubes in the presence of electric fields can lead to discharges that produce dark count rates that are highly variable. A solution was found by applying the same insulating varnish as used for the high voltage bases directly to the outside of the photomultiplier tubes. This transparent conformal coating provides a convenient and inexpensive method of insulatio

    Intrinsic limits on resolutions in muon- and electron-neutrino charged-current events in the KM3NeT/ORCA detector

    Get PDF
    Studying atmospheric neutrino oscillations in the few-GeV range with a multi-megaton detector promises to determine the neutrino mass hierarchy. This is the main science goal pursued by the future KM3NeT/ORCA water Cherenkov detector in the Mediterranean Sea. In this paper, the processes that limit the obtainable resolution in both energy and direction in charged-current neutrino events in the ORCA detector are investigated. These processes include the composition of the hadronic fragmentation products, the subsequent particle propagation and the photon-sampling fraction of the detector. GEANT simulations of neutrino interactions in seawater produced by GENIE are used to study the effects in the 1-20 GeV range. It is found that fluctuations in the hadronic cascade in conjunction with the variation of the inelasticity y are most detrimental to the resolutions. The effect of limited photon sampling in the detector is of significantly less importance. These results will therefore also be applicable to similar detectors/media, such as those in ice
    corecore