177 research outputs found

    Mining ancient microbiomes using selective enrichment of damaged DNA molecules

    Get PDF
    The identification of bona fide microbial taxa in microbiomes derived from ancient and historical samples is complicated by the unavoidable mixture between DNA from ante- and post-mortem microbial colonizers. One possibility to distinguish between these sources of microbial DNA is querying for the presence of age-associated degradation patterns typical of ancient DNA (aDNA). The presence of uracils, resulting from cytosine deamination, has been detected ubiquitously in aDNA retrieved from diverse sources, and used as an authentication criterion. Here, we employ a library preparation method that separates molecules that carry uracils from those that do not for a set of samples that includes Neandertal remains, herbarium specimens and archaeological plant remains

    Reducing microbial and human contamination in DNA extractions from ancient bones and teeth

    Get PDF
    Although great progress has been made in improving methods for generating DNA sequences from ancient biological samples, many, if not most, samples are still not amenable for analyses due to overwhelming contamination with microbial or modern human DNA. Here we explore different DNA decontamination procedures for ancient bones and teeth for use prior to DNA library preparation and high-throughput sequencing. Two procedures showed promising results: (i) the release of surface-bound DNA by phosphate buffer and (ii) the removal of DNA contamination by sodium hypochlorite treatment. Exposure to phosphate removes on average 64% of the microbial DNA from bone powder but only 37% of the endogenous DNA (from the organism under study), increasing the percentage of informative sequences by a factor of two on average. An average 4.6-fold increase, in one case reaching 24-fold, is achieved by sodium hypochlorite treatment, albeit at the expense of destroying 63% of the endogenous DNA preserved in the bone. While both pretreatment methods described here greatly reduce the cost of genome sequencing from ancient material due to efficient depletion of microbial DNA, we find that the removal of human DNA contamination remains a challenging problem

    Mitogenomics of macaques (Macaca) across Wallace's Line in the context of modern human dispersals

    No full text
    Wallace's Line demarcates a biogeographical boundary between the Indomalaya and Australasian ecoregions. Most placental mammalian genera, for example, occur to the west of this line, whereas most marsupial genera occur to the east. However, macaque monkeys are unusual because they naturally occur on both western and eastern sides. To further explore this anomalous distribution, we analyzed 222 mitochondrial genomes from ∼20 macaque species, including new genomes from 60 specimens. These comprise a population sampling of most Sulawesi macaques, Macaca fascicularis (long-tailed macaques) specimens that were collected by Alfred R. Wallace and specimens that were recovered during archaeological excavations at Liang Bua, a cave on the Indonesian island of Flores. In M. fascicularis, three mitochondrial lineages span the southernmost portion of Wallace's Line between Bali and Lombok, and divergences within these lineages are contemporaneous with, and possibly mediated by, past dispersals of modern human populations. Near the central portion of Wallace's Line between Borneo and Sulawesi, a more ancient dispersal of macaques from mainland Asia to Sulawesi preceded modern human colonization, which was followed by rapid dispersal of matrilines and was subsequently influenced by recent interspecies hybridization. In contrast to previous studies, we find no strong signal of recombination in most macaque mitochondrial genomes. These findings further characterize macaque evolution before and after modern human dispersal throughout Southeast Asia and point to possible effects on biodiversity of ancient human cultural diasporas

    Nuclear and mitochondrial DNA sequences from two Denisovan individuals

    Get PDF
    Denisovans, a sister group of Neandertals, have been described on the basis of a nuclear genome sequence from a finger phalanx (Denisova 3) found in Denisova Cave in the Altai Mountains. The only other Denisovan specimen described to date is a molar (Denisova 4) found at the same site. This tooth carries a mtDNA sequence similar to that of Denisova 3. Here we present nuclear DNA sequences from Denisova 4 and a morphological description, as well as mitochondrial and nuclear DNA sequence data, from another molar (Denisova 8) found in Denisova Cave in 2010. This new molar is similar to Denisova 4 in being very large and lacking traits typical of Neandertals and modern humans. Nuclear DNA sequences from the two molars form a clade with Denisova 3. The mtDNA of Denisova 8 is more diverged and has accumulated fewer substitutions than the mtDNAs of the other two specimens, suggesting Denisovans were present in the region over an extended period. The nuclear DNA sequence diversity among the three Denisovans is comparable to that among six Neandertals, but lower than that among present-day humans

    Xenopus fraseri: Mr. Fraser, where did your frog come from?

    Get PDF
    A comprehensive, accurate, and revisable alpha taxonomy is crucial for biodiversity studies, but is challenging when data from reference specimens are difficult to collect or observe. However, recent technological advances can overcome some of these challenges. To illustrate this, we used modern approaches to tackle a centuries-old taxonomic enigma presented by Fraser’s Clawed Frog, Xenopus fraseri, including whether X. fraseri is different from other species, and if so, where it is situated geographically and phylogenetically. To facilitate these inferences, we used high-resolution techniques to examine morphological variation, and we generated and analyzed complete mitochondrial genome sequences from all Xenopus species, including >150-year-old type specimens. Our results demonstrate that X. fraseri is indeed distinct from other species, firmly place this species within a phylogenetic context, and identify its minimal geographic distribution in northern Ghana and northern Cameroon. These data also permit novel phylogenetic resolution into this intensively studied and biomedically important group. Xenopus fraseri was formerly thought to be a rainforest endemic placed alongside species in the amieti species group; in fact this species occurs in arid habitat on the borderlands of the Sahel, and is the smallest member of the muelleri species group. This study illustrates that the taxonomic enigma of Fraser’s frog was a combined consequence of sparse collection records, interspecies conservation and intraspecific polymorphism in external anatomy, and type specimens with unusual morphology

    Inference of natural selection from ancient DNA.

    Get PDF
    Evolutionary processes, including selection, can be indirectly inferred based on patterns of genomic variation among contemporary populations or species. However, this often requires unrealistic assumptions of ancestral demography and selective regimes. Sequencing ancient DNA from temporally spaced samples can inform about past selection processes, as time series data allow direct quantification of population parameters collected before, during, and after genetic changes driven by selection. In this Comment and Opinion, we advocate for the inclusion of temporal sampling and the generation of paleogenomic datasets in evolutionary biology, and highlight some of the recent advances that have yet to be broadly applied by evolutionary biologists. In doing so, we consider the expected signatures of balancing, purifying, and positive selection in time series data, and detail how this can advance our understanding of the chronology and tempo of genomic change driven by selection. However, we also recognize the limitations of such data, which can suffer from postmortem damage, fragmentation, low coverage, and typically low sample size. We therefore highlight the many assumptions and considerations associated with analyzing paleogenomic data and the assumptions associated with analytical methods

    Genetic insights into the social organization of Neanderthals

    Get PDF
    Genomic analyses of Neanderthals have previously provided insights into their population history and relationship to modern humans1–8, but the social organization of Neanderthal communities remains poorly understood. Here we present genetic data for 13 Neanderthals from two Middle Palaeolithic sites in the Altai Mountains of southern Siberia: 11 from Chagyrskaya Cave9,10 and 2 from Okladnikov Cave11—making this one of the largest genetic studies of a Neanderthal population to date. We used hybridization capture to obtain genome-wide nuclear data, as well as mitochondrial and Y-chromosome sequences. Some Chagyrskaya individuals were closely related, including a father–daughter pair and a pair of second-degree relatives, indicating that at least some of the individuals lived at the same time. Up to one-third of these individuals’ genomes had long segments of homozygosity, suggesting that the Chagyrskaya Neanderthals were part of a small community. In addition, the Y-chromosome diversity is an order of magnitude lower than the mitochondrial diversity, a pattern that we found is best explained by female migration between communities. Thus, the genetic data presented here provide a detailed documentation of the social organization of an isolated Neanderthal community at the easternmost extent of their known range

    The efficacy of high-throughput sequencing and target enrichment on charred archaeobotanical remains

    Get PDF
    The majority of archaeological plant material is preserved in a charred state. Obtaining reliable ancient DNA data from these remains has presented challenges due to high rates of nucleotide damage, short DNA fragment lengths, low endogenous DNA content and the potential for modern contamination. It has been suggested that high-throughput sequencing (HTS) technologies coupled with DNA enrichment techniques may overcome some of these limitations. Here we report the findings of HTS and target enrichment on four important archaeological crops (barley, grape, maize and rice) performed in three different laboratories, presenting the largest HTS assessment of charred archaeobotanical specimens to date. Rigorous analysis of our data-excluding false-positives due to background contamination or incorrect index assignments-indicated a lack of endogenous DNA in nearly all samples, except for one lightly-charred maize cob. Even with target enrichment, this sample failed to yield adequate data required to address fundamental questions in archaeology and biology. We further reanalysed part of an existing dataset on charred plant material, and found all purported endogenous DNA sequences were likely to be spurious. We suggest these technologies are not suitable for use with charred archaeobotanicals and urge great caution when interpreting data obtained by HTS of these remains
    corecore