81 research outputs found

    First Detection of Polarization of the Submillimetre Diffuse Galactic Dust Emission by Archeops

    Get PDF
    We present the first determination of the Galactic polarized emission at 353 GHz by Archeops. The data were taken during the Arctic night of February 7, 2002 after the balloon--borne instrument was launched by CNES from the Swedish Esrange base near Kiruna. In addition to the 143 GHz and 217 GHz frequency bands dedicated to CMB studies, Archeops had one 545 GHz and six 353 GHz bolometers mounted in three polarization sensitive pairs that were used for Galactic foreground studies. We present maps of the I, Q, U Stokes parameters over 17% of the sky and with a 13 arcmin resolution at 353 GHz (850 microns). They show a significant Galactic large scale polarized emission coherent on the longitude ranges [100, 120] and [180, 200] deg. with a degree of polarization at the level of 4-5%, in agreement with expectations from starlight polarization measurements. Some regions in the Galactic plane (Gem OB1, Cassiopeia) show an even stronger degree of polarization in the range 10-20%. Those findings provide strong evidence for a powerful grain alignment mechanism throughout the interstellar medium and a coherent magnetic field coplanar to the Galactic plane. This magnetic field pervades even some dense clouds. Extrapolated to high Galactic latitude, these results indicate that interstellar dust polarized emission is the major foreground for PLANCK-HFI CMB polarization measurement.Comment: Submitted to Astron. & Astrophys., 14 pages, 12 Fig., 2 Table

    The Cosmic Microwave Background Anisotropy Power Spectrum measured by Archeops

    Get PDF
    We present a determination by the Archeops experiment of the angular power spectrum of the cosmic microwave background anisotropy in 16 bins over the multipole range l=15-350. Archeops was conceived as a precursor of the Planck HFI instrument by using the same optical design and the same technology for the detectors and their cooling. Archeops is a balloon-borne instrument consisting of a 1.5 m aperture diameter telescope and an array of 21 photometers maintained at ~100 mK that are operating in 4 frequency bands centered at 143, 217, 353 and 545 GHz. The data were taken during the Arctic night of February 7, 2002 after the instrument was launched by CNES from Esrange base (Sweden). The entire data cover ~ 30% of the sky.This first analysis was obtained with a small subset of the dataset using the most sensitive photometer in each CMB band (143 and 217 GHz) and 12.6% of the sky at galactic latitudes above 30 degrees where the foreground contamination is measured to be negligible. The large sky coverage and medium resolution (better than 15 arcminutes) provide for the first time a high signal-to-noise ratio determination of the power spectrum over angular scales that include both the first acoustic peak and scales probed by COBE/DMR. With a binning of Delta(l)=7 to 25 the error bars are dominated by sample variance for l below 200. A companion paper details the cosmological implications.Comment: A&A Letter, in press, 6 pages, 4 figures, see also http://www.archeops.or

    The electromagnetic calorimeter for the T2K near detector ND280

    Get PDF
    The T2K experiment studies oscillations of an off-axis muon neutrino beam between the J-PARC accelerator complex and the Super-Kamiokande detector. Special emphasis is placed on measuring the mixing angle Ξ 13 by observing Îœ e appearance via the sub-dominant ΜΌ Îœ e oscillation and searching for CP violation in the lepton sector. The experiment includes a sophisticated, off-axis, near detector, the ND280, situated 280 m downstream of the neutrino production target in order to measure the properties of the neutrino beam and to understand better neutrino interactions at the energy scale below a few GeV. The data collected with the ND280 are used to study charged- and neutral-current neutrino interaction rates and kinematics prior to oscillation, in order to reduce uncertainties in the oscillation measurements by the far detector. A key element of the near detector is the ND280 electromagnetic calorimeter (ECal), consisting of active scintillator bars sandwiched between lead sheets and read out with multi-pixel photon counters (MPPCs). The ECal is vital to the reconstruction of neutral particles, and the identification of charged particle species. The ECal surrounds the Pi-0 detector (PØD) and the tracking region of the ND280, and is enclosed in the former UA1/NOMAD dipole magnet. This paper describes the design, construction and assembly of the ECal, as well as the materials from which it is composed. The electronic and data acquisition (DAQ) systems are discussed, and performance of the ECal modules, as deduced from measurements with particle beams, cosmic rays, the calibration system, and T2K data, is described.© 2013 IOP Publishing Ltd and Sissa Medialab srl.The ECal detector has been built and is operated using funds provided by the Science and Technology Facilities Council U.K. Important support was also provided by the collaborating institutions. Individual researchers have been supported by the Royal Society and the European Research Council

    First muon-neutrino disappearance study with an off-axis beam

    Get PDF
    We report a measurement of muon-neutrino disappearance in the T2K experiment. The 295-km muon-neutrino beam from Tokai to Kamioka is the first implementation of the off-axis technique in a long-baseline neutrino oscillation experiment

    A laser-wire system for the International Linear Collider

    No full text
    A new laser-wire has been installed in the extraction line of the ATF at KEK. It aims at demonstrating that laser-wires can be used to measure micrometre scale beam size. In parallel, studies have been made to specify a laser suitable for the ILC laser-wires. © Indian Academy of Sciences

    Wil in liberal arts programs: New approaches

    No full text
    In a service-led, knowledge-based economy, employers increasingly expect universities to deliver a workforce suited to this environment. This emphasis is evident in contemporary Australian higher education, which is shifting to an acquisition of vocational outcomes. However, vocational outcomes are not traditionally viewed as outcomes of liberal arts programs. Balancing new expectations with traditional perspectives generates a tension between assuring graduates employment outcomes and maintaining the integrity of the Bachelor of Arts (BA) as a liberal arts program. Getting it wrong can result in fragmented and unstable curricula. One of the many ways that Australian BA programs are grappling with this problem is through the provision of work-integrated learning (WIL) opportunities for liberal arts students. In professions-based programs such as engineering or dentistry, the shape and nature of these courses may be obvious. It is less so in the generalist BA. Australian BA programs offer students the opportunity to engage with WIL in a variety of ways. Evidence from national studies investigating the Australian BA between 2008 and 2016 highlight common features of practice such as the objectives, activities, and structure, and indicate that two approaches to providing WIL opportunities in the BA are evident. In order to meet the goals and aspirations of both economic and social purposes of higher education, liberal arts programs tend to adopt either a transactional or a transformational model. Each model has particular characteristics and approaches to practice that can inform the development of new programs and policies more globally

    The T2K experiment

    Get PDF
    The T2K experiment is a long baseline neutrino oscillation experiment. Its main goal is to measure the last unknown lepton sector mixing angle Ξ13 by observing Μe appearance in a ΜΌ beam. It also aims to make a precision measurement of the known oscillation parameters, and sin22Ξ23, via ΜΌ disappearance studies. Other goals of the experiment include various neutrino cross-section measurements and sterile neutrino searches. The experiment uses an intense proton beam generated by the J-PARC accelerator in Tokai, Japan, and is composed of a neutrino beamline, a near detector complex (ND280), and a far detector (Super-Kamiokande) located 295 km away from J-PARC. This paper provides a comprehensive review of the instrumentation aspect of the T2K experiment and a summary of the vital information for each subsystem

    Micron size laser-wire system at the ATF extraction line, recent results and ATF-II upgrade

    Get PDF
    The KEK Accelerator test facility (ATF) extraction line laser-wire system has been upgraded last year allowing the measurement of micron scale transverse size electron beams. The last measurements using the upgraded system from recent operation at the ATF are presented, demonstrating raw measurements of order 3Όm RMS. The main component contributions to this measurement are also discussed. © 2010 Elsevier B.V. All rights reserved
    • 

    corecore