48 research outputs found

    MEGARA anti-reflective coatings: theoretical and observed throughput estimations

    Get PDF
    MEGARA is the new integral field unit (IFU) and multi-object (MOS) spectrograph successfully commissioned at Gran Telescopio Canarias, in August 2017. MEGARA provides spectral resolutions R (fwhm) similar to 6000, 12000 and 20000, via volume phase holographic gratings, at very high efficiency in both IFU and MOS modes. In the case of MEGARA main optics and pupil elements optics, the surfaces in contact with air have an anti-reflective (AR) coatings to minimize the Fresnel losses at the interface glass-air. In this work we present the designs and calculation of the total throughput of the optical system based in the transmission measurements of the AR coated witness samples. The results reflect the benefits of having implemented customized AR coatings for the mean angle of incidence on each surface as the measured throughput was better than the requirements. We analyze the effects of the pupil elements AR coatings for each spectral configuration

    Predictive and therapeutic implications of a novel PLCγ1/SHP2-driven mechanism of cetuximab resistance in metastatic colorectal cancer

    Get PDF
    © 2022 The Authors; Published by the American Association for Cancer Research. This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 International (CC BY-NC-ND)Purpose: Cetuximab is an EGFR-targeted therapy approved for the treatment of RAS wild-type (WT) metastatic colorectal cancer (mCRC). However, about 60% of these patients show innate resistance to cetuximab. To increase cetuximab efficacy, it is crucial to successfully identify responder patients, as well as to develop new therapeutic approaches to overcome cetuximab resistance. Experimental design: We evaluated the value of EGFR effector phospholipase C gamma 1 (PLCγ1) in predicting cetuximab responses, by analyzing progression-free survival (PFS) of a multicentric retrospective cohort of 94 treated patients with mCRC (log-rank test and Cox regression model). Furthermore, we used in vitro and zebrafish xenotransplant models to identify and target the mechanism behind PLCγ1-mediated resistance to cetuximab. Results: In this study, levels of PLCγ1 were found increased in RAS WT tumors and were able to predict cetuximab responses in clinical samples and in vitro and in vivo models. Mechanistically, PLCγ1 expression was found to bypass cetuximab-dependent EGFR inhibition by activating ERK and AKT pathways. This novel resistance mechanism involves a noncatalytic role of PLCγ1 SH2 tandem domains in the propagation of downstream signaling via SH2-containing protein tyrosine phosphatase 2 (SHP2). Accordingly, SHP2 inhibition sensitizes PLCγ1-resistant cells to cetuximab. Conclusions: Our discoveries reveal the potential of PLCγ1 as a predictive biomarker for cetuximab responses and suggest an alternative therapeutic approach to circumvent PLCγ1-mediated resistance to cetuximab in patients with RAS WT mCRC. In this way, this work contributes to the development of novel strategies in the medical management and treatment of patients with mCRC.M. Martins' research was supported by Liga Portuguesa Contra o Cancro (LPCC): Terry Fox Fundation; Investigador FCT- Fundação para a Ciência e Technologia (IF/00409/2014) and IMM Bridge grant; RC-D research was supported by Fundação para a Ciência e Technologia (SFRH/BD/139138/2018). A. Fernandes was supported by LPCC-IMM BIOBANK; R. Fior was supported by Champalimaud Foundation and L. Costa was supported by Merck Serono.info:eu-repo/semantics/publishedVersio

    A novel cancer-associated cassette exon in TLN1 alters Talin 1 mechanosensitivity

    Get PDF
    Talin 1 is the core mechanosensitive adapter protein linking integrins to the cytoskeleton. The TLN1 gene is comprised of 57 exons that encode the 2541 amino acid TLN1 protein. TLN1 was previously considered to be expressed as a single isoform. However, through differential pre-mRNA splicing analysis, we discovered a cancer-enriched, non-annotated 51-nucleotide exon in TLN1 between exons 17 and 18, which we refer to as exon 17b. TLN1 is comprised of an N-terminal FERM domain, linked to 13 force-dependent switch domains, R1-R13. Inclusion of exon 17b results in an in-frame insertion of 17 amino acids immediately after Gln665 in the region between R1-R2 which lowers the force required to open the R1-R2 switches potentially altering downstream mechanotransduction. Biochemical analysis of this isoform revealed enhanced vinculin binding, and cells expressing this variant show altered adhesion dynamics. Finally, we show that the TGF-Beta/SMAD3 signaling pathway regulates this isoform switch. Future studies will need to consider the balance of these two TLN1 isoforms

    A genome-wide RNAi screen identifies the SMC5/6 complex as a non-redundant regulator of a Topo2a-dependent G2 arrest

    Get PDF
    The Topo2a-dependent arrest is associated with faithful segregation of sister chromatids and has been identified as dysfunctional in numerous tumour cell lines. This genome-protecting pathway is poorly understood and its characterization is of significant interest, potentially offering interventional opportunities in relation to synthetic lethal behaviours in arrest-defective tumours. Using the catalytic Topo2a inhibitor ICRF193, we have performed a genome-wide siRNA screen in arrest-competent, non-transformed cells, to identify genes essential for this arrest mechanism. In addition, we have counter-screened several DNA-damaging agents and demonstrate that the Topo2a-dependent arrest is genetically distinct from DNA damage checkpoints. We identify the components of the SMC5/6 complex, including the activity of the E3 SUMO ligase NSE2, as non-redundant players that control the timing of the Topo2a-dependent arrest in G2. We have independently verified the NSE2 requirement in fibroblasts from patients with germline mutations that cause severely reduced levels of NSE2. Through imaging Topo2a-dependent G2 arrested cells, an increased interaction between Topo2a and NSE2 is observed at PML bodies, which are known SUMOylation hotspots. We demonstrate that Topo2a is SUMOylated in an ICRF193-dependent manner by NSE2 at a novel non-canonical site (K1520) and that K1520 sumoylation is required for chromosome segregation but not the G2 arrest

    The Met oncogene and basal-like breast cancer: another culprit to watch out for?

    Get PDF
    Recent findings suggest the involvement of the MET oncogene, encoding the tyrosine kinase receptor for hepatocyte growth factor, in the onset and progression of basal-like breast carcinoma. The expression profiles of basal-like tumors - but not those of other breast cancer subtypes - are enriched for gene sets that are coordinately over-represented in transcriptional signatures regulated by Met. Consistently, tissue microarray analyses have revealed that Met immunoreactivity is much higher in basal-like cases of human breast cancer than in other tumor types. Finally, mouse models expressing mutationally activated forms of Met develop a high incidence of mammary tumors, some of which exhibit basal characteristics. The present review summarizes current knowledge on the role and activity of Met in basal-like breast cancer, with a special emphasis on the correlation between this tumor subtype and the cellular hierarchy of the normal mammary gland

    Proteomics analysis with a nano Random Forest approach reveals novel functional interactions regulated by SMC complexes on mitotic chromosomes

    Get PDF
    Packaging of DNA into condensed chromosomes during mitosis is essential for the faithful segregation of the genome into daughter nuclei. Although the structure and composition of mitotic chromosomes have been studied for over 30 years, these aspects are yet to be fully elucidated. Here, we used stable isotope labeling with amino acids in cell culture to compare the proteomes of mitotic chromosomes isolated from cell lines harboring conditional knockouts of members of the condensin (SMC2, CAP-H, CAP-D3), cohesin (Scc1/Rad21), and SMC5/6 (SMC5) complexes. Our analysis revealed that these complexes associate with chromosomes independently of each other, with the SMC5/6 complex showing no significant dependence on any other chromosomal proteins during mitosis. To identify subtle relationships between chromosomal proteins, we employed a nano Random Forest (nanoRF) approach to detect protein complexes and the relationships between them. Our nanoRF results suggested that as few as 113 of 5058 detected chromosomal proteins are functionally linked to chromosome structure and segregation. Furthermore, nanoRF data revealed 23 proteins that were not previously suspected to have functional interactions with complexes playing important roles in mitosis. Subsequent small-interfering-RNA-based validation and localization tracking by green fluorescent protein-tagging highlighted novel candidates that might play significant roles in mitotic progression

    Jurisdicción constitucional las sentencias de unificación como mecanismo que conduce a la uniformidad en la interpretación

    No full text
    La Doctrina Constitucional de la Jurisprudencia Constitucional, distinción esta realmente importante para el posterior análisis de las valoraciones que los jueces deben hacer al proferir sentencias cuando actúan como Jueces Constitucionale
    corecore