239 research outputs found

    The acheulean handaxe : More like a bird's song than a beatles' tune?

    Get PDF
    © 2016 Wiley Periodicals, Inc. KV is supported by the Netherlands Organization for Scientific Research. MC is supported by the Canada Research Chairs Program, the Social Sciences and Humanities Research of Canada, the Canada Foundation for Innovation, the British Columbia Knowledge Development Fund, and Simon Fraser UniversityPeer reviewedPublisher PD

    Collective animal navigation and migratory culture: From theoretical models to empirical evidence

    Get PDF
    Animals often travel in groups, and their navigational decisions can be influenced by social interactions. Both theory and empirical observations suggest that such collective navigation can result in individuals improving their ability to find their way and could be one of the key benefits of sociality for these species. Here, we provide an overview of the potential mechanisms underlying collective navigation, review the known, and supposed, empirical evidence for such behaviour and highlight interesting directions for future research. We further explore how both social and collective learning during group navigation could lead to the accumulation of knowledge at the population level, resulting in the emergence of migratory culture

    Deferred imitation and declarative memory in domestic dogs

    Get PDF
    This study demonstrates for the first time deferred imitation of novel actions in dogs (Canis familiaris) with retention intervals of 1.5 min and memory of familiar actions with intervals ranging from 0.40 to 10 min. Eight dogs were trained using the 'Do as I do' method to match their own behaviour to actions displayed by a human demonstrator. They were then trained to wait for a short interval to elapse before they were allowed to show the previously demonstrated action. The dogs were then tested for memory of the demonstrated behaviour in various conditions, also with the so-called two-action procedure and in a control condition without demonstration. Dogs were typically able to reproduce familiar actions after intervals as long as 10 min, even if distracted by different activities during the retention interval and were able to match their behaviour to the demonstration of a novel action after a delay of 1 min. In the two-action procedure, dogs were typically able to imitate the novel demonstrated behaviour after retention intervals of 1.5 min. The ability to encode and recall an action after a delay implies that facilitative processes cannot exhaustively explain the observed behavioural similarity and that dogs' imitative abilities are rather based on an enduring mental representation of the demonstration. Furthermore, the ability to imitate a novel action after a delay without previous practice suggests presence of declarative memory in dogs. © 2013 Springer-Verlag Berlin Heidelberg

    Symmetry restoring bifurcation in collective decision-making.

    Get PDF
    How social groups and organisms decide between alternative feeding sites or shelters has been extensively studied both experimentally and theoretically. One key result is the existence of a symmetry-breaking bifurcation at a critical system size, where there is a switch from evenly distributed exploitation of all options to a focussed exploitation of just one. Here we present a decision-making model in which symmetry-breaking is followed by a symmetry restoring bifurcation, whereby very large systems return to an even distribution of exploitation amongst options. The model assumes local positive feedback, coupled with a negative feedback regulating the flow toward the feeding sites. We show that the model is consistent with three different strains of the slime mold Physarum polycephalum, choosing between two feeding sites. We argue that this combination of feedbacks could allow collective foraging organisms to react flexibly in a dynamic environment

    Harnessing learning biases is essential for applying social learning in conservation

    Get PDF
    Social learning can influence how animals respond to anthropogenic changes in the environment, determining whether animals survive novel threats and exploit novel resources or produce maladaptive behaviour and contribute to human-wildlife conflict. Predicting where social learning will occur and manipulating its use are, therefore, important in conservation, but doing so is not straightforward. Learning is an inherently biased process that has been shaped by natural selection to prioritize important information and facilitate its efficient uptake. In this regard, social learning is no different from other learning processes because it too is shaped by perceptual filters, attentional biases and learning constraints that can differ between habitats, species, individuals and contexts. The biases that constrain social learning are not understood well enough to accurately predict whether or not social learning will occur in many situations, which limits the effective use of social learning in conservation practice. Nevertheless, we argue that by tapping into the biases that guide the social transmission of information, the conservation applications of social learning could be improved. We explore the conservation areas where social learning is highly relevant and link them to biases in the cues and contexts that shape social information use. The resulting synthesis highlights many promising areas for collaboration between the fields and stresses the importance of systematic reviews of the evidence surrounding social learning practices.BBSRC David Phillips Fellowship (BB/H021817/1

    Evidence for Emulation in Chimpanzees in Social Settings Using the Floating Peanut Task

    Get PDF
    The authors have no support or funding to report.Background: It is still unclear which observational learning mechanisms underlie the transmission of difficult problem-solving skills in chimpanzees. In particular, two different mechanisms have been proposed: imitation and emulation. Previous studies have largely failed to control for social factors when these mechanisms were targeted. Methods: In an attempt to resolve the existing discrepancies, we adopted the 'floating peanut task', in which subjects need to spit water into a tube until it is sufficiently full for floating peanuts to be grasped. In a previous study only a few chimpanzees were able to invent the necessary solution (and they either did so in their first trials or never). Here we compared success levels in baseline tests with two experimental conditions that followed: 1) A full model condition to test whether social demonstrations would be effective, and 2) A social emulation control condition, in which a human experimenter poured water from a bottle into the tube, to test whether results information alone (present in both experimental conditions) would also induce successes. Crucially, we controlled for social factors in both experimental conditions. Both types of demonstrations significantly increased successful spitting, with no differences between demonstration types. We also found that younger subjects were more likely to succeed than older ones. Our analysis showed that mere order effects could not explain our results. Conclusion: The full demonstration condition (which potentially offers additional information to observers, in the form of actions), induced no more successes than the emulation condition. Hence, emulation learning could explain the success in both conditions. This finding has broad implications for the interpretation of chimpanzee traditions, for which emulation learning may perhaps suffice.Publisher PDFPeer reviewe

    The Influence of Life History Milestones and Association Networks on Crop-Raiding Behavior in Male African Elephants

    Get PDF
    Factors that influence learning and the spread of behavior in wild animal populations are important for understanding species responses to changing environments and for species conservation. In populations of wildlife species that come into conflict with humans by raiding cultivated crops, simple models of exposure of individual animals to crops do not entirely explain the prevalence of crop raiding behavior. We investigated the influence of life history milestones using age and association patterns on the probability of being a crop raider among wild free ranging male African elephants; we focused on males because female elephants are not known to raid crops in our study population. We examined several features of an elephant association network; network density, community structure and association based on age similarity since they are known to influence the spread of behaviors in a population. We found that older males were more likely to be raiders than younger males, that males were more likely to be raiders when their closest associates were also raiders, and that males were more likely to be raiders when their second closest associates were raiders older than them. The male association network had sparse associations, a tendency for individuals similar in age and raiding status to associate, and a strong community structure. However, raiders were randomly distributed between communities. These features of the elephant association network may limit the spread of raiding behavior and likely determine the prevalence of raiding behavior in elephant populations. Our results suggest that social learning has a major influence on the acquisition of raiding behavior in younger males whereas life history factors are important drivers of raiding behavior in older males. Further, both life-history and network patterns may influence the acquisition and spread of complex behaviors in animal populations and provide insight on managing human-wildlife conflict
    corecore