53 research outputs found

    M2K: I. A Jovian mass planet around the M3V star HIP79431

    Full text link
    Doppler observations from Keck Observatory reveal the presence of a planet with Msini of 2.1 Mjup orbiting the M3V star HIP79431. This is the sixth giant planet to be detected in Doppler surveys of M dwarfs and it is one of the most massive planets discovered around an M dwarf star. The planet has an orbital period of 111.7 days and an orbital eccentricity of 0.29. The host star is metal rich, with an estimated [Fe/H] = +0.4. This is the first planet to emerge from our new survey of 1600 M-to-K dwarf stars.Comment: 5 figure

    Two Exoplanets Discovered at Keck Observatory

    Get PDF
    We present two exoplanets detected at Keck Observatory. HD 179079 is a G5 subgiant that hosts a hot Neptune planet with Msini = 27.5 M_earth in a 14.48 d, low-eccentricity orbit. The stellar reflex velocity induced by this planet has a semiamplitude of K = 6.6 m/s. HD 73534 is a G5 subgiant with a Jupiter-like planet of Msini = 1.1 M_jup and K = 16 m/s in a nearly circular 4.85 yr orbit. Both stars are chromospherically inactive and metal-rich. We discuss a known, classical bias in measuring eccentricities for orbits with velocity semiamplitudes, K, comparable to the radial velocity uncertainties. For exoplanets with periods longer than 10 days, the observed exoplanet eccentricity distribution is nearly flat for large amplitude systems (K > 80 m/s), but rises linearly toward low eccentricity for lower amplitude systems (K > 20 m/s).Comment: 8 figures, 6 tables, accepted, Ap

    The NASA-UC Eta-Earth Program: I. A Super-Earth Orbiting HD 7924

    Get PDF
    We report the discovery of the first low-mass planet to emerge from the NASA-UC Eta-Earth Program, a super-Earth orbiting the K0 dwarf HD 7924. Keplerian modeling of precise Doppler radial velocities reveals a planet with minimum mass M_P sin i = 9.26 M_Earth in a P = 5.398 d orbit. Based on Keck-HIRES measurements from 2001 to 2008, the planet is robustly detected with an estimated false alarm probability of less than 0.001. Photometric observations using the Automated Photometric Telescopes at Fairborn Observatory show that HD 7924 is photometrically constant over the radial velocity period to 0.19 mmag, supporting the existence of the planetary companion. No transits were detected down to a photometric limit of ~0.5 mmag, eliminating transiting planets with a variety of compositions. HD 7924b is one of only eight planets known with M_P sin i < 10 M_Earth and as such is a member of an emerging family of low-mass planets that together constrain theories of planet formation.Comment: ApJ accepted, 10 pages, 10 figures, 4 table

    M2K: I. A Jupiter-Mass Planet Orbiting the M3V Star HIP 79431

    Get PDF
    Doppler observations from Keck Observatory reveal the presence of a planet with M sin i of 2.1 M_(Jup) orbiting the M3V star HIP 79431. This is the sixth giant planet to be detected in Doppler surveys of M dwarfs and it is one of the most massive planets discovered around an M dwarf star. The planet has an orbital period of 111.7 days and an orbital eccentricity of 0.29. The host star is metal rich, with an estimated [Fe/H] = +0.4. This is the first planet to emerge from our new survey of 1600 M-to-K dwarf stars

    Prospecting in ultracool dwarfs : Measuring the metallicities of mid- and late-m dwarfs

    Get PDF
    © 2014. The American Astronomical Society. All rights reserved.Metallicity is a fundamental parameter that contributes to the physical characteristics of a star. The low temperatures and complex molecules present in M dwarf atmospheres make it difficult to measure their metallicities using techniques that have been commonly used for Sun-like stars. Although there has been significant progress in developing empirical methods to measure M dwarf metallicities over the last few years, these techniques have been developed primarily for early- to mid-M dwarfs. We present a method to measure the metallicity of mid- to late-M dwarfs from moderate resolution (R ∼ 2000) K-band (≃ 2.2 μm) spectra. We calibrate our formula using 44 wide binaries containing an F, G, K, or early-M primary of known metallicity and a mid- to late-M dwarf companion. We show that similar features and techniques used for early-M dwarfs are still effective for late-M dwarfs. Our revised calibration is accurate to ∼0.07 dex for M4.5-M9.5 dwarfs with -0.58 <[Fe/H] <+0.56 and shows no systematic trends with spectral type, metallicity, or the method used to determine the primary star metallicity. We show that our method gives consistent metallicities for the components of M+M wide binaries. We verify that our new formula works for unresolved binaries by combining spectra of single stars. Lastly, we show that our calibration gives consistent metallicities with the Mann et al. study for overlapping (M4-M5) stars, establishing that the two calibrations can be used in combination to determine metallicities across the entire M dwarf sequence.Peer reviewe

    New X-ray Clusters in the EMSS I: Modifications to the XLF

    Full text link
    The complete ensemble of Einstein Imaging Proportional Counter (IPC) X-ray images has been re-processed and re-analyzed using a multi-aperture source detection algorithm. A catalog of 772 new source candidates detected within the central regions of the 1435 IPC fields comprising the Extended Medium Sensitivity Survey (EMSS) has been compiled. By comparison, 478 EMSS sources fall within the same area of sky. A randomly-selected subsample of 133 fields was first examined. We found that most of these sources are either the summation of two or more lower count rate point sources that fall within the larger detection apertures or are single point sources, while \leq 2.3% of the full catalog of sources are extrapolated to be actual distant (z > 0.14) clusters whose extended X-ray structure kept them from being detected in the EMSS despite having sufficient total flux. We then constructed other subsamples specifically selected to contain those X-ray sources most likely to be clusters. Both a database search and an optical imaging campaign have found several new distant clusters, setting a firm lower limit on the number of new clusters in the entire catalog. We estimate that the original EMSS cluster sample is 72-83% complete. We update the Henry et al. 1992 EMSS distant cluster sample with more recent information, and use the redshifts and X-ray luminosities for these new EMSS clusters to compute a revised X-ray Luminosity Function (XLF). The addition of these new high-z, high-L_X clusters to the EMSS is sufficient to remove the requirement for ``negative'' evolution at high-L_X out to z~0.5. We conclude that the EMSS has systematically missed clusters of low surface brightness.Comment: Accepted to ApJ, 32 pages, 8 figures, uses emulateapj5.sty, for associated data table see http://casa.colorado.edu/~lewisad/research/nemsscatalog.htm

    M2K: II. A Triple-Planet System Orbiting HIP 57274

    Get PDF
    Doppler observations from Keck Observatory have revealed a triple planet system orbiting the nearby mid-type K dwarf, HIP 57274. The inner planet, HIP 57274b, is a super-Earth with \msini\ = 11.6 \mearth (0.036 \mjup), an orbital period of 8.135 ±\pm 0.004 d, and slightly eccentric orbit e=0.19±0.1e=0.19 \pm 0.1. We calculate a transit probability of 6.5% for the inner planet. The second planet has \msini\ = 0.4 \mjup\ with an orbital period of 32.0 ±0.02\pm 0.02 d in a nearly circular orbit, and e=0.05±0.03e = 0.05 \pm 0.03. The third planet has \msini\ = 0.53 \mjup\ with an orbital period of 432 ±8\pm 8 d (1.18 years) and an eccentricity e=0.23±0.03e = 0.23 \pm 0.03. This discovery adds to the number of super Earth mass planets with \msini < 12 \mearth\ that have been detected with Doppler surveys. We find that 56 ±18\pm 18% super-Earths are members of multi-planet systems. This is certainly a lower limit because of observational detectability limits, yet significantly higher than the fraction of Jupiter mass exoplanets, 20±820 \pm 8%, that are members of Doppler-detected, multi-planet systems.Comment: 11 figures, submitte to ApJ on Sept 10, 201

    The Plasma and Suprathermal Ion Composition (PLASTIC) investigation on the STEREO observatories

    Get PDF
    The Plasma and Suprathermal Ion Composition (PLASTIC) investigation provides the in situ solar wind and low energy heliospheric ion measurements for the NASA Solar Terrestrial Relations Observatory Mission, which consists of two spacecraft (STEREO-A, STEREO-B). PLASTIC-A and PLASTIC-B are identical. Each PLASTIC is a time-of-flight/energy mass spectrometer designed to determine the elemental composition, ionic charge states, and bulk flow parameters of major solar wind ions in the mass range from hydrogen to iron. PLASTIC has nearly complete angular coverage in the ecliptic plane and an energy range from ∼0.3 to 80 keV/e, from which the distribution functions of suprathermal ions, including those ions created in pick-up and local shock acceleration processes, are also provided

    Formation and Evolution of Planetary Systems (FEPS): Properties of Debris Dust around Solar-type Stars

    Get PDF
    We present Spitzer photometric (IRAC and MIPS) and spectroscopic (IRS low resolution) observations for 314 stars in the Formation and Evolution of Planetary Systems (FEPS) Legacy program. These data are used to investigate the properties and evolution of circumstellar dust around solar-type stars spanning ages from approximately 3 Myr to 3 Gyr. We identify 46 sources that exhibit excess infrared emission above the stellar photosphere at 24um, and 21 sources with excesses at 70um. Five sources with an infrared excess have characteristics of optically thick primordial disks, while the remaining sources have properties akin to debris systems. The fraction of systems exhibiting a 24um excess greater than 10.2% above the photosphere is 15% for ages < 300 Myr and declines to 2.7% for older ages. The upper envelope to the 70um fractional luminosity appears to decline over a similar age range. The characteristic temperature of the debris inferred from the IRS spectra range between 60 and 180 K, with evidence for the presence of cooler dust to account for the strength of the 70um excess emission. No strong correlation is found between dust temperature and stellar age. Comparison of the observational data with disk models containing a power-law distribution of silicate grains suggest that the typical inner disk radius is > 10 AU. Although the interpretation is not unique, the lack of excess emission shortwards of 16um and the relatively flat distribution of the 24um excess for ages <300~Myr is consistent with steady-state collisional models.Comment: 85 pages, 18 figures, 4 tables; accepted for publication in ApJ
    corecore