33 research outputs found

    Factors that influence outcomes and device use for pediatric cochlear implant recipients with unilateral hearing loss

    Get PDF
    Introduction Candidacy criteria for cochlear implantation in the United States has expanded to include children with single-sided deafness (SSD) who are at least 5 years of age. Pediatric cochlear implant (CI) users with SSD experience improved speech recognition with increased daily device use. There are few studies that report the hearing hour percentage (HHP) or the incidence of non-use for pediatric CI recipients with SSD. The aim of this study was to investigate factors that impact outcomes in children with SSD who use CIs. A secondary aim was to identify factors that impact daily device use in this population. Methods A clinical database query revealed 97 pediatric CI recipients with SSD who underwent implantation between 2014 and 2022 and had records of datalogs. The clinical test battery included speech recognition assessment for CNC words with the CI-alone and BKB-SIN with the CI plus the normal-hearing ear (combined condition). The target and masker for the BKB-SIN were presented in collocated and spatially separated conditions to evaluate spatial release from masking (SRM). Linear mixed-effects models evaluated the influence of time since activation, duration of deafness, HHP, and age at activation on performance (CNC and SRM). A separate linear mixed-effects model evaluated the main effects of age at testing, time since activation, duration of deafness, and onset of deafness (stable, progressive, or sudden) on HHP. Results Longer time since activation, shorter duration of deafness, and higher HHP were significantly correlated with better CNC word scores. Younger age at device activation was not found to be a significant predictor of CNC outcomes. There was a significant relationship between HHP and SRM, with children who had higher HHP experiencing greater SRM. There was a significant negative correlation between time since activation and age at test with HHP. Children with sudden hearing loss had a higher HHP than children with progressive and congenital hearing losses. Conclusion The present data presented here do not support a cut-off age or duration of deafness for pediatric cochlear implantation in cases of SSD. Instead, they expand on our understanding of the benefits of CI use in this population by reviewing the factors that influence outcomes in this growing patient population. Higher HHP, or greater percentage of time spent each day using bilateral input, was associated with better outcomes in the CI-alone and in the combined condition. Younger children and those within the first months of use had higher HHP. Clinicians should discuss these factors and how they may influence CI outcomes with potential candidates with SSD and their families. Ongoing work is investigating the long-term outcomes in this patient population, including whether increasing HHP after a period of limited CI use results in improved outcomes

    “Just one animal among many?” Existential phenomenology, ethics, and stem cell research

    Get PDF
    Stem cell research and associated or derivative biotechnologies are proceeding at a pace that has left bioethics behind as a discipline that is more or less reactionary to their developments. Further, much of the available ethical deliberation remains determined by the conceptual framework of late modern metaphysics and the correlative ethical theories of utilitarianism and deontology. Lacking, to any meaningful extent, is a sustained engagement with ontological and epistemological critiques, such as with “postmodern” thinking like that of Heidegger’s existential phenomenology. Some basic “Heideggerian” conceptual strategies are reviewed here as a way of remedying this deficiency and adding to ethical deliberation about current stem cell research practices

    Global urban environmental change drives adaptation in white clover

    Get PDF
    Urbanization transforms environments in ways that alter biological evolution. We examined whether urban environmental change drives parallel evolution by sampling 110,019 white clover plants from 6169 populations in 160 cities globally. Plants were assayed for a Mendelian antiherbivore defense that also affects tolerance to abiotic stressors. Urban-rural gradients were associated with the evolution of clines in defense in 47% of cities throughout the world. Variation in the strength of clines was explained by environmental changes in drought stress and vegetation cover that varied among cities. Sequencing 2074 genomes from 26 cities revealed that the evolution of urban-rural clines was best explained by adaptive evolution, but the degree of parallel adaptation varied among cities. Our results demonstrate that urbanization leads to adaptation at a global scale

    Development of an amplicon-based sequencing approach in response to the global emergence of mpox.

    Get PDF
    The 2022 multicountry mpox outbreak concurrent with the ongoing Coronavirus Disease 2019 (COVID-19) pandemic further highlighted the need for genomic surveillance and rapid pathogen whole-genome sequencing. While metagenomic sequencing approaches have been used to sequence many of the early mpox infections, these methods are resource intensive and require samples with high viral DNA concentrations. Given the atypical clinical presentation of cases associated with the outbreak and uncertainty regarding viral load across both the course of infection and anatomical body sites, there was an urgent need for a more sensitive and broadly applicable sequencing approach. Highly multiplexed amplicon-based sequencing (PrimalSeq) was initially developed for sequencing of Zika virus, and later adapted as the main sequencing approach for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Here, we used PrimalScheme to develop a primer scheme for human monkeypox virus that can be used with many sequencing and bioinformatics pipelines implemented in public health laboratories during the COVID-19 pandemic. We sequenced clinical specimens that tested presumptively positive for human monkeypox virus with amplicon-based and metagenomic sequencing approaches. We found notably higher genome coverage across the virus genome, with minimal amplicon drop-outs, in using the amplicon-based sequencing approach, particularly in higher PCR cycle threshold (Ct) (lower DNA titer) samples. Further testing demonstrated that Ct value correlated with the number of sequencing reads and influenced the percent genome coverage. To maximize genome coverage when resources are limited, we recommend selecting samples with a PCR Ct below 31 Ct and generating 1 million sequencing reads per sample. To support national and international public health genomic surveillance efforts, we sent out primer pool aliquots to 10 laboratories across the United States, United Kingdom, Brazil, and Portugal. These public health laboratories successfully implemented the human monkeypox virus primer scheme in various amplicon sequencing workflows and with different sample types across a range of Ct values. Thus, we show that amplicon-based sequencing can provide a rapidly deployable, cost-effective, and flexible approach to pathogen whole-genome sequencing in response to newly emerging pathogens. Importantly, through the implementation of our primer scheme into existing SARS-CoV-2 workflows and across a range of sample types and sequencing platforms, we further demonstrate the potential of this approach for rapid outbreak response

    Source data for S1 Fig.

    No full text
    The 2022 multicountry mpox outbreak concurrent with the ongoing Coronavirus Disease 2019 (COVID-19) pandemic further highlighted the need for genomic surveillance and rapid pathogen whole-genome sequencing. While metagenomic sequencing approaches have been used to sequence many of the early mpox infections, these methods are resource intensive and require samples with high viral DNA concentrations. Given the atypical clinical presentation of cases associated with the outbreak and uncertainty regarding viral load across both the course of infection and anatomical body sites, there was an urgent need for a more sensitive and broadly applicable sequencing approach. Highly multiplexed amplicon-based sequencing (PrimalSeq) was initially developed for sequencing of Zika virus, and later adapted as the main sequencing approach for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Here, we used PrimalScheme to develop a primer scheme for human monkeypox virus that can be used with many sequencing and bioinformatics pipelines implemented in public health laboratories during the COVID-19 pandemic. We sequenced clinical specimens that tested presumptively positive for human monkeypox virus with amplicon-based and metagenomic sequencing approaches. We found notably higher genome coverage across the virus genome, with minimal amplicon drop-outs, in using the amplicon-based sequencing approach, particularly in higher PCR cycle threshold (Ct) (lower DNA titer) samples. Further testing demonstrated that Ct value correlated with the number of sequencing reads and influenced the percent genome coverage. To maximize genome coverage when resources are limited, we recommend selecting samples with a PCR Ct below 31 Ct and generating 1 million sequencing reads per sample. To support national and international public health genomic surveillance efforts, we sent out primer pool aliquots to 10 laboratories across the United States, United Kingdom, Brazil, and Portugal. These public health laboratories successfully implemented the human monkeypox virus primer scheme in various amplicon sequencing workflows and with different sample types across a range of Ct values. Thus, we show that amplicon-based sequencing can provide a rapidly deployable, cost-effective, and flexible approach to pathogen whole-genome sequencing in response to newly emerging pathogens. Importantly, through the implementation of our primer scheme into existing SARS-CoV-2 workflows and across a range of sample types and sequencing platforms, we further demonstrate the potential of this approach for rapid outbreak response.</div

    Geographical distribution of public health laboratories that implemented the human monkeypox virus primer scheme with their established amplicon-based sequencing workflows.

    No full text
    Public health laboratories contributing data to this study include: CDPH, CEVS, DPHL, FDH, IBL, JHMI, LACPHL, MASPHL, MDH, NHS Lothian, INSA, and RISHL. The base layer of the map has been sourced from Carto (https://docs.carto.com/development-tools/carto-for-react/guides/basemaps) under an open source CC-BY license (https://github.com/CartoDB/basemap-styles/blob/master/LICENSE.md). CDPH, Connecticut Department of Public Health; CEVS, Centro Estadual de VigilĂąncia em SaĂșde; DPHL, Delaware Public Health Lab; FDH, Florida Department of Health; IBL, Idaho Bureau of Laboratories; INSA, National Institute of Health Dr. Ricardo Jorge; JHMI, Johns Hopkins Medical Institutions; LACPHL, Los Angeles County Public Health Lab; MASPHL, Massachusetts State Public Health Laboratory; MDH, Minnesota Department of Health; NHS Lothian, National Health Service Lothian; RISHL, Rhode Island State Health Laboratory.</p
    corecore