99 research outputs found

    Socioeconomic and phytosanitary diagnosis of fruit farming in Rolim de Moura, RO, Brazil.

    Get PDF
    Abstract: The objective of this work was to perform a socioeconomic and phytosanitary survey on the fruit production in Rolim de Moura, RO, Brazil. The research was carried out with 20 smallholders working with commercial fruit growing, to whom 25 objective and discursive questions were addressed, and who were interviewed. The results showed that the labor market attracts the producers? sons to the urban area, reducing the labor force of the fruit farming. Besides, the lack of technical assistance (50%) stimulates production where producers are not alerted for the use of PPE (personal protective equipment), when applying pesticides. There is also the lack of technological resources, a reason that together with the age of the producers contributes to reduce the production quality. However, the main problem faced in the commercialization of fruits is their low price. Plant health was compromised, as diseases were identified in all crops, especially in the passion fruit plantations, since the production decrease caused their abandonment, leading the producers to get involved with other sources of income, such as dairy farming, and only 25% of farmers subsist on fruit growing. Resumo: O objetivo deste trabalho foi realizar um levantamento socioeconômico e fitossanitário sobre a produção de frutas na cidade de Rolim de Moura, RO, Brasil. A pesquisa foi feita com pequenos produtores que trabalham com o cultivo comercial de frutas, a quem enviamos 25 questões objetivas e discursivas, e dos quais 20 produtores foram entrevistados. Os resultados mostraram que o mercado de trabalho atrai os filhos dos produtores para a área urbana, o que reduz a força de trabalho para o cultivo de frutas. Além disso, a falta de assistência técnica (50%) estimula a produção em lugares onde os produtores não são alertados quanto ao uso de equipamentos pessoais protetores, quando aplicam pesticidas. Há, ainda, a falta de recursos tecnológicos, uma razão que, acrescentada à a idade dos produtores, contribui para reduzir a qualidade da produção. No entanto, o principal problema enfrentado para a comercialização das frutas é seu baixo preço. A sanidade vegetal está comprometida, pois identificaram-se doenças em todas as culturas, especialmente nas plantações de maracujá, pois o decréscimo da produção causou o abandono dos cultivos, o que levou os produtores a se envolverem com outras fontes de renda, como a produção leiteira, e apenas 25% dos fazendeiros subsistem da fruticultura.Título em inglês: Diagnose socioeconômica e fitossanitária da fruticultura em Rolim de Moura, RO, Brasil

    Pyrimidine biosynthesis is not an essential function for trypanosoma brucei bloodstream forms

    Get PDF
    <p>Background: African trypanosomes are capable of both pyrimidine biosynthesis and salvage of preformed pyrimidines from the host, but it is unknown whether either process is essential to the parasite.</p> <p>Methodology/Principal Findings: Pyrimidine requirements for growth were investigated using strictly pyrimidine-free media, with or without single added pyrimidine sources. Growth rates of wild-type bloodstream form Trypanosoma brucei brucei were unchanged in pyrimidine-free medium. The essentiality of the de novo pyrimidine biosynthesis pathway was studied by knocking out the PYR6-5 locus that produces a fusion product of orotate phosphoribosyltransferase (OPRT) and Orotidine Monophosphate Decarboxylase (OMPDCase). The pyrimidine auxotroph was dependent on a suitable extracellular pyrimidine source. Pyrimidine starvation was rapidly lethal and non-reversible, causing incomplete DNA content in new cells. The phenotype could be rescued by addition of uracil; supplementation with uridine, 2′deoxyuridine, and cytidine allowed a diminished growth rate and density. PYR6-5−/− trypanosomes were more sensitive to pyrimidine antimetabolites and displayed increased uracil transport rates and uridine phosphorylase activity. Pyrimidine auxotrophs were able to infect mice although the infection developed much more slowly than infection with the parental, prototrophic trypanosome line.</p> <p>Conclusions/Significance: Pyrimidine salvage was not an essential function for bloodstream T. b. brucei. However, trypanosomes lacking de novo pyrimidine biosynthesis are completely dependent on an extracellular pyrimidine source, strongly preferring uracil, and display reduced infectivity. As T. brucei are able to salvage sufficient pyrimidines from the host environment, the pyrimidine biosynthesis pathway is not a viable drug target, although any interruption of pyrimidine supply was lethal.</p&gt

    Search for short baseline nu(e) disappearance with the T2K near detector

    Get PDF
    8 pages, 6 figures, submitted to PRD rapid communication8 pages, 6 figures, submitted to PRD rapid communicationWe thank the J-PARC staff for superb accelerator performance and the CERN NA61 collaboration for providing valuable particle production data. We acknowledge the support of MEXT, Japan; NSERC, NRC and CFI, Canada; Commissariat `a l’Energie Atomique and Centre National de la Recherche Scientifique–Institut National de Physique Nucle´aire et de Physique des Particules, France; DFG, Germany; INFN, Italy; National Science Centre (NCN), Poland; Russian Science Foundation, RFBR and Ministry of Education and Science, Russia; MINECO and European Regional Development Fund, Spain; Swiss National Science Foundation and State Secretariat for Education, Research and Innovation, Switzerland; STFC, UK; and DOE, USA. We also thank CERN for the UA1/NOMAD magnet, DESY for the HERA-B magnet mover system, NII for SINET4, the WestGrid and SciNet consortia in Compute Canada, GridPP, UK. In addition participation of individual researchers and institutions has been further supported by funds from ERC (FP7), EU; JSPS, Japan; Royal Society, UK; DOE Early Career program, USA

    Measurements of neutrino oscillation in appearance and disappearance channels by the T2K experiment with 6.6 x 10(20) protons on target

    Get PDF
    111 pages, 45 figures, submitted to Physical Review D. Minor revisions to text following referee comments111 pages, 45 figures, submitted to Physical Review D. Minor revisions to text following referee comments111 pages, 45 figures, submitted to Physical Review D. Minor revisions to text following referee commentsWe thank the J-PARC staff for superb accelerator performance and the CERN NA61/SHINE Collaboration for providing valuable particle production data. We acknowledge the support of MEXT, Japan; NSERC, NRC, and CFI, Canada; CEA and CNRS/IN2P3, France; DFG, Germany; INFN, Italy; National Science Centre (NCN), Poland; RSF, RFBR and MES, Russia; MINECO and ERDF funds, Spain; SNSF and SER, Switzerland; STFC, UK; and the U. S. Deparment of Energy, USA. We also thank CERN for the UA1/NOMAD magnet, DESY for the HERA-B magnet mover system, NII for SINET4, the WestGrid and SciNet consortia in Compute Canada, GridPP, UK, and the Emerald High Performance Computing facility in the Centre for Innovation, UK. In addition, participation of individual researchers and institutions has been further supported by funds from ERC (FP7), EU; JSPS, Japan; Royal Society, UK; and DOE Early Career program, USA

    Measurement of the electron neutrino charged-current interaction rate on water with the T2K ND280 pi(0) detector

    Get PDF
    10 pages, 6 figures, Submitted to PRDhttp://journals.aps.org/prd/abstract/10.1103/PhysRevD.91.112010© 2015 American Physical Society11 pages, 6 figures, as accepted to PRD11 pages, 6 figures, as accepted to PRD11 pages, 6 figures, as accepted to PR

    Positively selected modifications in the pore of TbAQP2 allow pentamidine to enter Trypanosoma brucei

    Get PDF
    Mutations in the Trypanosoma brucei aquaporin AQP2 are associated with resistance to pentamidine and melarsoprol. We show that TbAQP2 but not TbAQP3 was positively selected for increased pore size from a common ancestor aquaporin. We demonstrate that TbAQP2’s unique architecture permits pentamidine permeation through its central pore and show how specific mutations in highly conserved motifs affect drug permeation. Introduction of key TbAQP2 amino acids into TbAQP3 renders the latter permeable to pentamidine. Molecular dynamics demonstrates that permeation by dicationic pentamidine is energetically favourable in TbAQP2, driven by the membrane potential, although aquaporins are normally strictly impermeable for ionic species. We also identify the structural determinants that make pentamidine a permeant although most other diamidine drugs are excluded. Our results have wide-ranging implications for optimising antitrypanosomal drugs and averting cross-resistance. Moreover, these new insights in aquaporin permeation may allow the pharmacological exploitation of other members of this ubiquitous gene family

    Measurement of the Inclusive Electron Neutrino Charged Current Cross Section on Carbon with the T2K Near Detector

    Get PDF
    The T2K off-axis near detector ND280 is used to make the first differential cross-section measurements of electron neutrino charged current interactions at energies similar to 1 GeV as a function of electron momentum, electron scattering angle, and four-momentum transfer of the interaction. The total flux-averaged nu(e) charged current cross section on carbon is measured to be (phi) = 1.11 +/- 0.10(stat) +/- 0.18(syst) x 10(-38) cm(2)/nucleon. The differential and total cross- section measurements agree with the predictions of two leading neutrino interaction generators, NEUT and GENIE. The NEUT prediction is 1.23 x 10(-38) cm(2)/nucleon and the GENIE prediction is 1.08 x 10(-38) cm(2)/nucleon. The total nu(e) charged current cross-section result is also in agreement with data from the Gargamelle experiment

    LC–MS-based absolute metabolite quantification:Application to metabolic flux measurement in trypanosomes

    Get PDF
    Human African trypanosomiasis is a neglected tropical disease caused by the protozoan parasite, Trypanosoma brucei. In the mammalian bloodstream, the trypanosome’s metabolism differs significantly from that of its host. For example, the parasite relies exclusively on glycolysis for energy source. Recently, computational and mathematical models of trypanosome metabolism have been generated to assist in understanding the parasite metabolism with the aim of facilitating drug development. Optimisation of these models requires quantitative information, including metabolite concentrations and/or metabolic fluxes that have been hitherto unavailable on a large scale. Here, we have implemented an LC–MS-based method that allows large scale quantification of metabolite levels by using U-13C-labelled E. coli extracts as internal standards. Known amounts of labelled E. coli extract were added into the parasite samples, as well as calibration standards, and used to obtain calibration curves enabling us to convert intensities into concentrations. This method allowed us to reliably quantify the changes of 43 intracellular metabolites and 32 extracellular metabolites in the medium over time. Based on the absolute quantification, we were able to compute consumption and production fluxes. These quantitative data can now be used to optimise computational models of parasite metabolism

    T2K neutrino flux prediction

    Get PDF
    cited By 15 art_number: 012001 affiliation: Centre for Particle Physics, Department of Physics, University of Alberta, Edmonton, AB, Canada; Albert Einstein Center for Fundamental Physics, Laboratory for High Energy Physics (LHEP), University of Bern, Bern, Switzerland; Department of Physics, Boston University, Boston, MA, United States; Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada; Department of Physics and Astronomy, University of California Irvine, Irvine, CA, United States; IRFU, CEA Saclay, Gif-sur-Yvette, France; Institute for Universe and Elementary Particles, Chonnam National University, Gwangju, South Korea; Department of Physics, University of Colorado at Boulder, Boulder, CO, United States; Department of Physics, Colorado State University, Fort Collins, CO, United States; Department of Physics, Dongshin University, Naju, South Korea; Department of Physics, Duke University, Durham, NC, United States; IN2P3-CNRS, Laboratoire Leprince-Ringuet, Ecole Polytechnique, Palaiseau, France; Institute for Particle Physics, ETH Zurich, Zurich, Switzerland; Section de Physique, DPNC, University of Geneva, Geneva, Switzerland; H. Niewodniczanski Institute of Nuclear Physics PAN, Cracow, Poland; High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki, Japan; Institut de Fisica d’Altes Energies (IFAE), Bellaterra (Barcelona), Spain; IFIC (CSIC and University of Valencia), Valencia, Spain; Department of Physics, Imperial College London, London, United Kingdom; INFN Sezione di Bari, Dipartimento Interuniversitario di Fisica, Università e Politecnico di Bari, Bari, Italy; INFN Sezione di Napoli and Dipartimento di Fisica, Università di Napoli, Napoli, Italy; INFN Sezione di Padova, Dipartimento di Fisica, Università di Padova, Padova, Italy; INFN Sezione di Roma, Università di Roma la Sapienza, Roma, Italy; Institute for Nuclear Research, Russian Academy of Sciences, Moscow, Russian Federation; Kobe University, Kobe, Japan; Department of Physics, Kyoto University, Kyoto, Japan; Physics Department, Lancaster University, Lancaster, United Kingdom; Department of Physics, University of Liverpool, Liverpool, United Kingdom; Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA, United States; Université de Lyon, Université Claude Bernard Lyon 1, IPN Lyon (IN2P3), Villeurbanne, France; Department of Physics, Miyagi University of Education, Sendai, Japan; National Centre for Nuclear Research, Warsaw, Poland; State University of New York at Stony Brook, Stony Brook, NY, United States; Department of Physics and Astronomy, Osaka City University, Department of Physics, Osaka, Japan; Department of Physics, Oxford University, Oxford, United Kingdom; UPMC, Université Paris Diderot, Laboratoire de Physique Nucléaire et de Hautes Energies (LPNHE), Paris, France; Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, United States; School of Physics, Queen Mary University of London, London, United Kingdom; Department of Physics, University of Regina, Regina, SK, Canada; Department of Physics and Astronomy, University of Rochester, Rochester, NY, United States; III. Physikalisches Institut, RWTH Aachen University, Aachen, Germany; Department of Physics and Astronomy, Seoul National University, Seoul, South Korea; Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom; University of Silesia, Institute of Physics, Katowice, Poland; STFC, Rutherford Appleton Laboratory, Harwell Oxford, Warrington, United Kingdom; Department of Physics, University of Tokyo, Tokyo, Japan; Institute for Cosmic Ray Research, Kamioka Observatory, University of Tokyo, Kamioka, Japan; Institute for Cosmic Ray Research, Research Center for Cosmic Neutrinos, University of Tokyo, Kashiwa, Japan; Department of Physics, University of Toronto, Toronto, ON, Canada; TRIUMF, Vancouver, BC, Canada; Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada; Faculty of Physics, University of Warsaw, Warsaw, Poland; Institute of Radioelectronics, Warsaw University of Technology, Warsaw, Poland; Department of Physics, University of Warwick, Coventry, United Kingdom; Department of Physics, University of Washington, Seattle, WA, United States; Department of Physics, University of Winnipeg, Winnipeg, MB, Canada; Faculty of Physics and Astronomy, Wroclaw University, Wroclaw, Poland; Department of Physics and Astronomy, York University, Toronto, ON, Canada references: Astier, P., (2003) Nucl. Instrum. Methods Phys. Res., Sect. A, 515, p. 800. , (NOMAD Collaboration), NIMAER 0168-9002 10.1016/j.nima.2003.07.054; Ahn, M., (2006) Phys. Rev. D, 74, p. 072003. , (K2K Collaboration), PRVDAQ 1550-7998 10.1103/PhysRevD.74.072003; Adamson, P., (2008) Phys. Rev. D, 77, p. 072002. , (MINOS Collaboration), PRVDAQ 1550-7998 10.1103/PhysRevD.77.072002; Aguilar-Arevalo, A., (2009) Phys. Rev. D, 79, p. 072002. , (MiniBooNE Collaboration), PRVDAQ 1550-7998 10.1103/PhysRevD.79.072002; (2003) Letter of Intent: Neutrino Oscillation Experiment at JHF, , http://neutrino.kek.jp/jhfnu/loi/loi_JHFcor.pdf, T2K Collaboration; Abe, K., (2011) Nucl. Instrum. Methods Phys. Res., Sect. A, 659, p. 106. , (T2K Collaboration), NIMAER 0168-9002 10.1016/j.nima.2011.06.067; Abe, K., (2011) Phys. Rev. Lett., 107, p. 041801. , (T2K Collaboration), PRLTAO 0031-9007 10.1103/PhysRevLett.107.041801; Abe, K., (2012) Phys. Rev. D, 85, p. 031103. , (T2K Collaboration), PRVDAQ 1550-7998 10.1103/PhysRevD.85.031103; Fukuda, Y., (2003) Nucl. Instrum. Methods Phys. Res., Sect. A, 501, p. 418. , NIMAER 0168-9002 10.1016/S0168-9002(03)00425-X; Beavis, D., Carroll, A., Chiang, I., (1995), Physics Design Report, BNL 52459Abgrall, N., (2011) Phys. Rev. C, 84, p. 034604. , (NA61/SHINE Collaboration), PRVCAN 0556-2813 10.1103/PhysRevC.84.034604; Abgrall, N., (2012) Phys. Rev. C, 85, p. 035210. , (NA61/SHINE Collaboration), PRVCAN 0556-2813 10.1103/PhysRevC.85.035210; Bhadra, S., (2013) Nucl. Instrum. Methods Phys. Res., Sect. A, 703, p. 45. , NIMAER 0168-9002 10.1016/j.nima.2012.11.044; Van Der Meer, S., Report No. CERN-61-07Palmer, R., Report No. CERN-65-32, 141Ichikawa, A., (2012) Nucl. Instrum. Methods Phys. Res., Sect. A, 690, p. 27. , NIMAER 0168-9002 10.1016/j.nima.2012.06.045; Matsuoka, K., (2010) Nucl. Instrum. Methods Phys. Res., Sect. A, 624, p. 591. , NIMAER 0168-9002 10.1016/j.nima.2010.09.074; Abe, K., (2012) Nucl. Instrum. Methods Phys. Res., Sect. A, 694, p. 211. , (T2K Collaboration), NIMAER 0168-9002 10.1016/j.nima.2012.03.023; Abgrall, N., (2011) Nucl. Instrum. Methods Phys. Res., Sect. A, 637, p. 25. , (T2K ND280 TPC Collaboration), NIMAER 0168-9002 10.1016/j.nima.2011.02. 036; Amaudruz, P.-A., (2012) Nucl. Instrum. Methods Phys. Res., Sect. A, 696, p. 1. , (T2K ND280 FGD Collaboration), NIMAER 0168-9002 10.1016/j.nima.2012.08. 020; Battistoni, G., Cerutti, F., Fasso, A., Ferrari, A., Muraro, S., Ranft, J., Roesler, S., Sala, P.R., (2007) AIP Conf. Proc., 896, p. 31. , APCPCS 0094-243X 10.1063/1.2720455; A. Ferrari, P. R. Sala, A. Fasso, and J. Ranft, Report No. CERN-2005-010A. Ferrari P. R. Sala A. Fasso J. Ranft Report No. SLAC-R-773A. Ferrari P. R. Sala A. Fasso J. Ranft Report No. INFN-TC-05-11R. Brun, F. Carminati, and S. Giani, Report No. CERN-W5013Zeitnitz, C., Gabriel, T.A., (1993) Proceedings of International Conference on Calorimetry in High Energy Physics, , in Elsevier Science B.V., Tallahassee, FL; Fasso, A., Ferrari, A., Ranft, J., Sala, P.R., Proceedings of the International Conference on Calorimetry in High Energy Physics, 1994, , in; Beringer, J., (2012) Phys. Rev. D, 86, p. 010001. , (Particle Data Group), PRVDAQ 1550-7998 10.1103/PhysRevD.86.010001; Eichten, T., (1972) Nucl. Phys. B, 44, p. 333. , NUPBBO 0550-3213 10.1016/0550-3213(72)90120-4; Allaby, J.V., Tech. Rep. 70-12 (CERN, 1970)Chemakin, I., (2008) Phys. Rev. C, 77, p. 015209. , PRVCAN 0556-2813 10.1103/PhysRevC.77.015209; Abrams, R.J., Cool, R., Giacomelli, G., Kycia, T., Leontic, B., Li, K., Michael, D., (1970) Phys. Rev. D, 1, p. 1917. , PRVDAQ 0556-2821 10.1103/PhysRevD.1.1917; Allaby, J.V., (1970) Yad. Fiz., 12, p. 538. , IDFZA7 0044-0027; Allaby, J.V., (1969) Phys. Lett. B, 30, p. 500. , PYLBAJ 0370-2693 10.1016/0370-2693(69)90184-1; Allardyce, B.W., (1973) Nucl. Phys. A, 209, p. 1. , NUPABL 0375-9474 10.1016/0375-9474(73)90049-3; Bellettini, G., Cocconi, G., Diddens, A.N., Lillethun, E., Matthiae, G., Scanlon, J.P., Wetherell, A.M., (1966) Nucl. Phys., 79, p. 609. , NUPHA7 0029-5582 10.1016/0029-5582(66)90267-7; Bobchenko, B.M., (1979) Sov. J. Nucl. Phys., 30, p. 805. , SJNCAS 0038-5506; Carroll, A.S., (1979) Phys. Lett. B, 80, p. 319. , PYLBAJ 0370-2693 10.1016/0370-2693(79)90226-0; Cronin, J.W., Cool, R., Abashian, A., (1957) Phys. Rev., 107, p. 1121. , PHRVAO 0031-899X 10.1103/PhysRev.107.1121; Chen, F.F., Leavitt, C., Shapiro, A., (1955) Phys. Rev., 99, p. 857. , PHRVAO 0031-899X 10.1103/PhysRev.99.857; Denisov, S.P., Donskov, S.V., Gorin, Yu.P., Krasnokutsky, R.N., Petrukhin, A.I., Prokoshkin, Yu.D., Stoyanova, D.A., (1973) Nucl. Phys. B, 61, p. 62. , NUPBBO 0550-3213 10.1016/0550-3213(73)90351-9; Longo, M.J., Moyer, B.J., (1962) Phys. Rev., 125, p. 701. , PHRVAO 0031-899X 10.1103/PhysRev.125.701; Vlasov, A.V., (1978) Sov. J. Nucl. Phys., 27, p. 222. , SJNCAS 0038-5506; Feynman, R., (1969) Phys. Rev. Lett., 23, p. 1415. , PRLTAO 0031-9007 10.1103/PhysRevLett.23.1415; Bonesini, M., Marchionni, A., Pietropaolo, F., Tabarelli De Fatis, T., (2001) Eur. Phys. J. C, 20, p. 13. , EPCFFB 1434-6044 10.1007/s100520100656; Barton, D.S., (1983) Phys. Rev. D, 27, p. 2580. , PRVDAQ 0556-2821 10.1103/PhysRevD.27.2580; Skubic, P., (1978) Phys. Rev. D, 18, p. 3115. , PRVDAQ 0556-2821 10.1103/PhysRevD.18.3115; Feynman, R.P., (1972) Photon-Hadron Interactions, , Benjamin, New York; Bjorken, J.D., Paschos, E.A., (1969) Phys. Rev., 185, p. 1975. , PHRVAO 0031-899X 10.1103/PhysRev.185.1975; Taylor, F.E., Carey, D., Johnson, J., Kammerud, R., Ritchie, D., Roberts, A., Sauer, J., Walker, J., (1976) Phys. Rev. D, 14, p. 1217. , PRVDAQ 0556-2821 10.1103/PhysRevD.14.1217; Abgrall, N., (2013) Nucl. Instrum. Methods Phys. Res., Sect. A, 701, p. 99. , NIMAER 0168-9002 10.1016/j.nima.2012.10.079; Hayato, Y., (2002) Nucl. Phys. B, Proc. Suppl., 112, p. 171. , NPBSE7 0920-5632 10.1016/S0920-5632(02)01759-0 correspondence_address1: Abe, K.; Institute for Cosmic Ray Research, Kamioka Observatory, University of Tokyo, Kamioka, Japan coden: PRVDA abbrev_source_title: Phys Rev D Part Fields Gravit Cosmol document_type: Article source: Scopu

    Measurement of the nu(mu) charged-current quasielastic cross section on carbon with the ND280 detector at T2K

    Get PDF
    This paper reports a measurement by the T2K experiment of the νμ charged current quasielastic (CCQE) cross section on a carbon target with the off-axis detector based on the observed distribution of muon momentum (pμ) and angle with respect to the incident neutrino beam (θμ). The flux-integrated CCQE cross section was measured to be ⟨σ⟩=(0.83±0.12)×10−38  cm2. The energy dependence of the CCQE cross section is also reported. The axial mass, MQEA, of the dipole axial form factor was extracted assuming the Smith-Moniz CCQE model with a relativistic Fermi gas nuclear model. Using the absolute (shape-only) pμ−cosθμ distribution, the effective MQEA parameter was measured to be 1.26+0.21−0.18  GeV/c2 (1.43+0.28−0.22  GeV/c2)
    corecore