2,002 research outputs found

    Modal stability of inclined cables subjected to vertical support excitation

    Get PDF
    In this paper the out-of-plane dynamic stability of inclined cables subjected to in-plane vertical support excitation is investigated. We compute stability boundaries for the out-of-plane modes using rescaling and averaging methods. Our study focuses on the 2:1 internal resonance phenomenon between modes that occurs when the excitation frequency is twice the ïŹrst out-of-plane natural frequency of the cable. The second in-plane mode is excited directly, while the out-of-plane modes can be excited parametrically. An analytical model is developed in order to study the stability regions in parameter space. In this model we include nonlinear coupling effects with other modes, which have thus far been omitted from previous models of parametric excitation of inclined cables. Our study reïŹ‚ects the importance of such effects. Unstable parameter regions are deïŹned for the selected cable conïŹguration. The validity of the proposed stability model was tested experimentally using a small-scale cable actuator rig. A comparison between experimental and analytical results is presented in which very good agreement with model predictions was obtained. r 2008 Elsevier Ltd. All rights reserved

    Causality in real-time dynamic substructure testing

    Get PDF
    Causality, in the bond graph sense, is shown to provide a conceptual framework for the design of real-time dynamic substructure testing experiments. In particular, known stability problems with split-inertia substructured systems are reinterpreted as causality issues within the new conceptual framework. As an example, causality analysis is used to provide a practical solution to a split-inertia substructuring problem and the solution is experimentally verified

    Novel FixL homologues in Chlamydomonas reinhardtii bind heme and O2

    Get PDF
    AbstractGenome inspection revealed nine putative heme-binding, FixL-homologous proteins in Chlamydomonas reinhardtii. The heme-binding domains from two of these proteins, FXL1 and FXL5 were cloned, expressed in Escherichia coli, purified and characterized. The recombinant FXL1 and FXL5 domains stained positively for heme, while mutations in the putative ligand-binding histidine FXL1-H200S and FXL5-H200S resulted in loss of heme binding. The FXL1 and FXL5 [Fe(II), bound O2] had Soret absorption maxima around 415nm, and weaker absorptions at longer wavelengths, in concurrence with the literature. Ligand-binding measurements showed that FXL1 and FXL5 bind O2 with moderate affinity, 135 and 222ÎŒM, respectively. This suggests that Chlamydomonas may use the FXL proteins in O2-sensing mechanisms analogous to that reported in nitrogen-fixing bacteria to regulate gene expression

    Effects of synthetic iron and aluminium oxide surface charge and hydrophobicity on the formation of bacterial biofilm

    Get PDF
    In this research, bacterial cell attachments to hematite, goethite and aluminium hydroxide were investigated. The aim was to study the effects of these minerals’ hydrophobicity and pH-dependent surface charge on the extent of biofilm formation using six genetically diverse bacterial strains: Rhodococcus spp. (RC92 & RC291), Pseudomonas spp. (Pse1 & Pse2) and Sphingomonas spp. (Sph1 & Sph2), which had been previously isolated from contaminated environments. The surfaces were prepared in a way that was compatible with the naturally occurring coating process in aquifers: deposition of colloidal particles from the aqueous phase. The biofilms were evaluated using a novel, in situ and non-invasive technique developed for this purpose. A manufactured polystyrene 12-well plate was used as the reference surface to be coated with synthesized minerals by deposition of their suspended particles through evaporation. Planktonic phase growth indicates that it is independent of the surface charge and hydrophobicity of the studied surfaces. The hydrophobic similarities failed to predict biofilm proliferation. Two of the three hydrophilic strains formed extensive biofilms on the minerals. The third one, Sph2, showed anomalies contrary to the expected electrostatic attraction between the minerals and the cell surface. Further research showed how the solution’s ionic strength affects Sph2 surface potential and shapes the extent of its biofilm formation; reducing the ionic strength from 200 mM to 20 mM led to a tenfold increase in the number of cells attached to hematite. This study provides a technique to evaluate biofilm formation on metal-oxide surfaces, under well-controlled conditions, using a simple yet reliable method. The findings also highlight that cell numbers in the planktonic phase do not necessarily show the extent of cell attachment, and thorough the physicochemical characterization of bacterial strains, substrata and the aquifer medium are fundamental to successfully implementing any bioremediation projects

    Modern nuclear force predictions for the neutron-deuteron scattering lengths

    Get PDF
    The nd doublet and quartet scattering lengths have been calculated based on the modern NN and 3N interactions. We also studied the effect of the electromagnetic interactions in the form introduced in AV18. Switching them off for the various nuclear force models leads to shifts of up to +0.04 fm for doublet scattering length, which is significant for present day standards. The electromagnetic effects have also a noticeable effect on quartet scattering length, which otherwise is extremely stable under the exchange of the nuclear forces. For the current nuclear force models there is a strong scatter of the 3H binding energy and the doublet scattering length values around an averaged straight line (Phillips line). This allows to use doublet scattering length and the 3H binding energy as independent low energy observables.Comment: 16 pages, 1 table, 4 ps figure

    A novel and cost-effective double-capsule nanocomposite coating based on carbon hollow spheres with self-healing performance for corrosion protection

    Get PDF
    The ability of a cost-effective self-healing nanocomposite system to restore its protection functionality in case of a coating defect is of pivotal importance to ensure durable performance under demanding corrosive conditions. In this research, a self-healing epoxy coating was fabricated by incorporation of carbon hollow spheres (CHSs) doped separately with epoxy and polyamine as film forming agents. Graphene-based CHSs were synthesized via silica templating method in presence of sucrose as a carbon precursor. After encapsulation of epoxy and polyamine agents in CHSs denoted as Ep-DCSs and Am-DCSs, respectively, 10 wt. % and 5 wt. % of Ep-DCSs and Am-DCSs were introduced in an epoxy matrix. The final nanocomposite coating was applied on the surface of mild steel substrates. A blank epoxy coating was also used as a control sample. The synthesized CHSs were characterized before and after the silica core removal using field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The CHSs loaded with the film forming agents were evaluated using thermogravimetric analysis (TGA) and Fourier transform infrared (FTIR) spectroscopy. Furthermore, the protective and self-healing properties of the coatings were studied using electrochemical impedance spectroscopy (EIS), scanning vibrating electrode technique (SVET) and salt spray testing. The obtained results showed that the fabricated nanocomposite epoxy coating can heal appropriately the scratches applied on the surface of the coating barricading the accessibility of corrosive species to the metal substrate (Figure 1). Please click Additional Files below to see the full abstract

    Theoretical consideration of pits recording and etching processes in chalcogenide vitreous semiconductors

    Full text link
    We propose theoretical consideration and computer modeling of information pit recording and etching processes in chalcogenide vitreous semiconductors. We demonstrate how to record and develop information pits with the necessary shape and sizes in chalcogenide photoresists using gaussian laser beam and selective etching. It has been shown that phototransformed region cross-section could be almost trapezoidal or parabolic depending on the photoresist material optical absorption, recording beam power, exposure, etchant selectivity and etching time. After illumination, the spatial distribution of photo-transformed material fraction was calculated using the Kolmogorov-Awrami equation. Analyzing obtained results, we derived a rather simple approximate analytical expression for the dependence of the photo-transformed region width and depth on the recording gaussian beam power, radius and exposure time. Then the selective etching process was simulated numerically. The obtained results quantitatively describes the characteristics of pits recorded by the gaussian laser beam in thin layers of As40S60 chalcogenide semiconductor.Comment: 14 pages, 1 scheme, 9 figure

    The 3-loop QCD calculation of the moments of deep inelastic structure functions

    Get PDF
    We present the analytic next-to-next-to-leading perturbative QCD corrections in the leading twist approximation for the moments N=2,4,6,8 of the flavour singlet deep inelastic structure functions F_2 and F_L. We calculate the three-loop anomalous dimensions of the corresponding singlet operators and the three-loop coefficient functions of the structure functions F_L and F_2. In addition, we obtained the 10th moment for the non-singlet structure functions in the same order of perturbative QCD. We perform an analysis of the obtained results.Comment: 46 pages, the complete Postscript file of this preprint (including 9 figures) is available at ftp://nikhefh.nikhef.nl/pub/preprints/96-010.ps.

    Updated guidelines for gene nomenclature in wheat

    Get PDF
    The last decade has seen a proliferation in genomic resources for wheat, including reference- and pan-genome assemblies with gene annotations, which provide new opportunities to detect, characterise, and describe genes that influence traits of interest. The expansion of genetic information has supported growth of the wheat research community and catalysed strong interest in the genes that control agronomically important traits, such as yield, pathogen resistance, grain quality, and abiotic stress tolerance. To accommodate these developments, we present an updated set of guidelines for gene nomenclature in wheat. These guidelines can be used to describe loci identified based on morphological or phenotypic features or to name genes based on sequence information, such as similarity to genes characterised in other species or the biochemical properties of the encoded protein. The updated guidelines provide a flexible system that is not overly prescriptive but provides structure and a common framework for naming genes in wheat, which may be extended to related cereal species. We propose these guidelines be used henceforth by the wheat research community to facilitate integration of data from independent studies and allow broader and more efficient use of text and data mining approaches, which will ultimately help further accelerate wheat research and breeding.EEA PergaminoFil: Boden, S. A. University of Adelaide. Waite Research Institute. School of Agriculture, Food and Wine; AustraliaFil: McIntosh, R .A. University of Sydney. School of Life and Environmental Sciences. Plant Breeding Institute; AustraliaFil: Uauy, C. Norwich Research Park. John Innes Centre; Reino UnidoFil: Krattinger, S. G. King Abdullah University of Science and Technology. Biological and Environmental Science and Engineering Division. Plant Science Program; Arabia SauditaFil: Krattinger, S. G. The Wheat Initiative; AlemaniaFil: Dubcovsky, J. University of California. Department of Plant Science; Estados UnidosFil: Dubcovsky, J. The Wheat Initiative; AlemaniaFil: Rogers, W.J. Universidad Nacional del Centro de La Provincia de Buenos Aires. Facultad de AgronomĂ­a (CIISAS, CIC-BIOLAB AZUL, CONICET-INBIOTEC, CRESCA). Departamento de BiologĂ­a Aplicada; ArgentinaFil: Rogers, W.J. The Wheat Initiative; AlemaniaFIL: Xia, X. C. Chinese Academy of Agricultural Sciences. National Wheat Improvement Centre. Institute of Crop Science; ChinaFil: Badaeva, E. D. Russian Academy of Sciences. N.I. Vavilov Institute of General Genetics; RusiaFil: Bentley, A. R. International Maize and Wheat Improvement Center (CIMMYT); MĂ©xicoFil: Bentley, A. R. The Wheat Initiative; AlemaniaFil: Brown-Guedira, G. North Carolina State University. USDA-ARS Plant Science Research; Estados UnidosFil: Brown-Guedira, G. The Wheat Initiative; AlemaniaFil: GonzĂĄlez, Fernanda G. Instituto Nacional de TecnologĂ­a Agropecuaria (INTA). EstaciĂłn Experimental Agropecuaria Pergamino. SecciĂłn EcofisiologĂ­a; ArgentinaFil: GonzĂĄlez, Fernanda G. Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires (CITNOBA, CONICET-UNNOBA-UNSADA); ArgentinaFil: GonzĂĄlez, Fernanda G. The Wheat Initiative; AlemaniaFil: Zhang, Y. Fudan University. School of Life Sciences. Institute of Plant Biology. Collaborative Innovation Center of Genetics and Development. State Key Laboratory of Genetic Engineering; Chin
    • 

    corecore