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Modal stability of inclined cables subjected to

harmonic excitation

A. Gonzalez-Buelga, S.A. Neild∗, D.J. Wagg and J.H.G. Macdonald

University of Bristol, Queens Building, University Walk

Bristol BS8 1TR, U.K.

October 15, 2007

Abstract

In this paper the out-of-plane stability of cables subjected to in-plane dynamic loading is investigated. We

compute stability boundaries for the out-of plane modes using rescaling and averaging methods. Our study

focuses on the 2:1internal resonance phenomena, that occurs when the external excitation frequency is twice the

first out-of-plane natural frequency of the cable. An analytical model is developed in order to study the stability

regions in parameter space. In this model we include nonlinear modal coupling effects which have thus far been

ommitted from previous models of inclined cables. Our study reflects the importance of such effects. Unstable

parameter regions are defined for the selected cable configurations to highlight the effects of the nondimensional

cable parameters. The validity of the proposed stability model was tested experimentally using a small scale

cable actuator rig. A comparison between experimental and analytical results is presented in which very good

agreement with model predictions were obtained.

Key words: Internal resonance, Stability, Mathieu equation, cable dynamics, nonlinear.

1 Introduction

Cable-supported structures such as cable-stay bridges can exhibit undesirable dynamic properties

especially when the structure is flexible and lightly damped. Cable dynamics are strongly nonlinear, with

internal coupling between modes and parametric coupling with external effects, such as the deck dynamics

∗Author for correspondance:simon.neild@bristol.ac.uk, Tel: +44 (117) 928 9730, Fax : +44 (117) 929 4423
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in the case of a cable-stay bridge. These nonlinear effects can produce complex behaviour resulting in

large amplitude cable vibrations, see for example the review by Nayfeh and Pai [1]. Internal resonance

can occur at specific ratios of excitation frequency to cable natural frequency, the most significant of

which occurs at the 2:1 ratio, at which small excitation amplitudes at the cable anchorage can result

in very large cable vibrations [2]. These vibrations can occur in-plane (defined as the plane in which

the cable sags statically) or out-of-plane even if the anchorage excitation is limited to just the in-plane

direction, as would typically be the case when a cable-stay bridge cable is excited by deck motion.

It has been shown that, provided sag is small, the second in-plane and out-of-plane cable natural

frequencies are at twice the first out-of-plane natural frequency [3]. If the support motion is close to 2:1

resonance of the first out-of-plane mode it will directly excite the second in-plane mode. Due to cable

non-linearity, the motion of the second in-plane mode and the external excitation may, if the excitation

is of sufficient amplitude, induce internal resonance of either the first or the second out-of-plane cable

modes or both modes. This paper concentrates of determining the level of vertical excitation of the lower

cable support required for the onset of an internally excited out-of-plane response. We refer to the onset

of an out-of-plane response as the instability point of the semi-trivial solution – the solution where only

the second in-plane mode is excited.

Modal stability studies of cable dynamics that consider internal resonance are usually based on the

Mathieu or Hill equation [4, 5]. For example [2] considered response in a single cable mode. The study

presented in [6] included more than one mode of vibration but without modal coupling and so the problem

reduces to uncoupled Mathieu equations. The simulation studies reported by [7–9] include both in-plane

and out-of-plane modes of horizontal cables and include some nonlinear interactions between these modes,

however explicit stability regions are not calculated. We use the modal model to compute the instability

boundary for a range of excitation frequencies close to 2:1 resonance. For a specific excitation frequency,

the point of instability is found by considering the local stability of the out-of-plane modes as the excitation

amplitude increases. The point at which either out-of-plane modes has non-zero response indicates the

onset of oscillations for that mode and hence the semi-trivial solution is no longer stable.

The experimental setup consists of a cable attached to an electro-mechanic actuator, such that the

lower anchor point can be excited vertically, and data is acquired with a high speed vision system [10].

The points of instability of the semi-trivial solution are detected in the experiment, by looking for the

onset of oscillations in the out-of-plane modes. We note that the first in-plane mode is less susceptible

to internal resonance when the excitation is at approximately twice the first out-of-plane frequency as

the modal frequency is higher than the first out-of-plane frequency due to the cable sag [3]. However as
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the excitation frequency increases this mode may also be excited. Consideration of this mode is beyond

the scope of the present study but the frequencies at which this mode is excited are highlighted in the

experimental results.

In section 2 a theoretical study of the stability of the semi-trivial solution is presented. The accuracy

of the theoretical results are assessed in section 3 by testing a small-scale cable both in simulation and

experimentally. A parametric study of the stability boundary is presented in section 4 and conclusions

are drawn in section 5.

2 Theoretical study

Firstly we present a modal model of the cable dynamics [11]. In the system considered here, when the

excitation at close to twice the first out-of-plane natural frequency, the second in-plane mode is excited

directly. In addition to this the first and second out-of-plane modes may be excited parametrically or via

non-linear modal coupling. We therefore reduce the model to these three modes of interest. At higher

excitation frequencies the first in-plane mode may also be excited parametrically but as noted in the

introduction this is beyond the scope of the present study. Considering the three modes of interest, the

second step in the analysis is to scale the equations and introduce detuning in the excitation frequency

to allow a study close to 2:1 resonance. We perform first-order averaging to derive first-order differential

equations of the response amplitudes for the sine and cosine components of the three modes. In the third

step of the analysis we use these equations to assess the local stability at the zero amplitude point for the

two out-of-plane modes in the presence of the external excitation and in-plane motion. For either of the

out-of-plane modes, local instability at the zero amplitude point will result in a response in that mode

and hence mark the stability boundary of the semi-trivial solution. Finally, we consider the amplitude

of response of the second in-plane mode just below the stability boundary of the semi-trivial solution

and use this to derive a relationship between the excitation amplitude and frequency detuning parameter

at the semi-trivial solution stability boundary. These stability boundaries can be plotted in parameter

space to indicate regions of stability and instability for each mode similar to an Arnold tongues in a single

degree of freedom Mathieu equation [REF?].

2.1 Step 1 - Equations of motion

There have been many presentations of the equations of motion for cables [1]. In this paper we adopt

the modal equations derived by Warnitchai et al. [11]. Their derivation includes the effect of support

motion at both ends of the cable and accounts for quadratic and cubic nonlinearities. The cable is
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supported at end points a and b and the direction of the chord line from a to b is defined as x, see

figure 1. The cable equilibrium sag position and the chord line both lie in the x − z plane, therefore z

represents in-plane motion and y represents out-of-plane motion. The angle between the chord line and the

horizontal is given as θ corresponds to the angle of inclination. Following [11], the modal representation

of the out-of-plane cable motion may be expressed as [11]

myn

(

ÿn + 2ξynωynẏn + ω2
ynyn

)

+
∑

k

νnkyn

(

y2
k + z2

k

)

+
∑

k

2βnkynzk+

+2ηn (ub − ua) yn + ζn
(

v̈a + (−1)n+1v̈b

)

= Fyn

(1)

and the in-plane cable motion as

mzn

(

z̈n + 2ξznωznżn + ω2
znzn

)

+
∑

k

νnkzn

(

y2
k + z2

k

)

+
∑

k

2βnkznzk +
∑

k

βkn

(

y2
k + z2

k

)

+

+2ηn (ub − ua) zn + ζn
(

ẅa + (−1)n+1ẅb

)

− αn (üb − üa) = Fzn

(2)

where yn and zn are the out-of-plane and in-plane generalised displacement of the cable in the nth mode

respectively; subscripts a and b denote the top and bottom anchorage points respectively; myn = mzn = m

is the modal mass (m = ρAL/2); L is the cable length; σs is the cable static stress; λ2 is Irvine’s parameter

[REF], A is the cross section area, ρ is the density and E is the Young’s Modulus. The equivalent modulus

of the cable Eq, the distributed weight perpendicular to the cable cord γ, and the parameters kn, νnk, βnk,

ηn, αn, λ, and Fyn and Fzn which represent external cable loading in the y and z direction respectively

are given by:

Eq =
1

1 + λ2

12

E γ = ρgcosθ λ =

√

E

σs

γL

σs

νnk =
EAπ4n2k2

8L3
βnk =

EAπγn2

4Lσs

(

1 + (−1)k+1

k

)

ηn =
EqAπ

2n2

4L2

ζn =
2m

nπ
αn =

2mγLEq

n3π3σ2
s

(

1 + (−1)n+1
)

Fyn =

∫ L

0

Y Aφndx

Fzn =

∫ L

0

ZAψndx

(3)

where φn and ψn are the out-of-plane and in-plane mode shapes. Finally, the out-of-plane and in-plane

natural frequencies, ωyn and ωzn respectively, are given by

ωyn =
nπ

L

√

σs

ρ
, ωzn =

nπ

L

√

σs

ρ
(1 + kn) (4)

Note that these equations assume that the sag and end displacements are small. Also it is assumed that

damping can be modelled as viscous with modal damping ratios ξzn and ξyn. See Warnitchai et al. [11]

for details of the derivation.
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Figure 1: Definition of cable coordinate system [11]

2.2 Step 2 - Scaling and Averaging

The cable is excited vertically at the bottom anchorage (point b) with amplitude ∆ and angular

frequency Ω. In this case the end conditions are ua = va = wa = 0, ub = δ sin θ, wb = δ cos θ and vb = 0,

where δ = ∆cos(Ωt) is the vertical displacement applied by the actuator. No external forces are applied

along the length of the cable.

In the simulation and experimental study presented in the next section the sag was such that ωy1 =

0.93ωz1; the first out and in-plane modes are therefore sufficiently separated in frequency. The remaining

modal frequencies have the relationships ωz2 = ωy2 = 2ωy1; we denote ω2 = ωz2 = ωy2 and ω1 = ωy1.

From equations (1) and (2), we can rewrite the modal equations of motion for the three modes being

considered (assuming negligible response in other modes in the frequency range considered) as

ÿ1 + 2ξy1ω1ẏ1 + ω2
1y1 +W11y

3
1 +W12y1

(

y2
2 + z2

2

)

+N1δy1 = 0

ÿ2 + 2ξy2ω2ẏ2 + ω2
2y2 +W21y2y

2
1 +W22y2

(

y2
2 + z2

2

)

+N2δy2 = 0

z̈2 + 2ξz2ω2ż2 + ω2
2z2 +W21z2y

2
1 +W22z2

(

y2
2 + z2

2

)

+N2δz2 = Bδ̈

(5)

where Wnk = νnk/m, Nn = 2ηn sin θ/m and B = ζ2 cos θ/m. This is a set of nonlinear Mathieu equations

which we can examine via scaling and averaging.

Introducing the small parameter ǫ, we scale the equations such that they are in the standard Lagrange

form, see [12] [13]:

ẍ+ ω2
nx = ǫf(ẋ, x, t) (6)

to reflect the fact that the response is dominated by the linear undamped response (a discussion of

scaling is given in Bakri et al [14]). The following transforms are made ξy1 → ǫξy1, ξy2 → ǫξy2,ξz2 → ǫξz2,
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(yi, zi) → ǫ1/2(yi, zi), B → ǫ1/2B and δ → ǫδ; giving

ÿ1 + ω2
1y1 + ǫ

(

2ξy1ω1ẏ1 +N1δy1 +W11y
3
1 +W12y1

[

y2
2 + z2

2

])

= 0

ÿ2 + ω2
2y2 + ǫ

(

2ξy2ω2ẏ2 +N2δy2 +W21y2y
2
1 +W22y2

[

y2
2 + z2

2

])

= 0

z̈2 + ω2
2z2 + ǫ

(

2ξz2ω2ż2 +N2δz2 +W21z2y
2
1 +W22z2

[

y2
2 + z2

2

])

= ǫBδ̈
(7)

The forcing frequency is close to twice the first out-of-plane natural frequency, therefore we write

Ω = 2ω1(1 + µ) and then scale µ → ǫµ such that Ω = 2ω1(1 + ǫµ) in the scaled domain. Using this,

taking into account that ω2 = 2ω1 and applying the time transform τ = (1 + ǫµ)t, we can write

y
′′

1 + ω2
1y1 + ǫ

(

2ξy1ω1y
′

1 +N1δy1 − 2µω2
1y1 +W11y

3
1 +W12y1

[

y2
2 + z2

2

]

)

= O(ǫ2)

y
′′

2 + ω2
2y2 + ǫ

(

2ξy2ω2y
′

2 +N2δy2 − 2µω2
2y2 +W21y2y

2
1 +W22y2

[

y2
2 + z2

2

]

)

= O(ǫ2)

z
′′

2 + ω2
2z2 + ǫ

(

2ξz2ω2z
′

2 +N2δz2 − 2µω2
2z2 +W21z2y

2
1 +W22z2

[

y2
2 + z2

2

]

−Bδ
′′

)

= O(ǫ2)
(8)

where {}′

represents the derivative with respect to τ and we assume the higher order terms with respect

to ǫ are negligible.

We introduce the notation {x11, x22, x32} = {y1, y2, z2} where the second subscript in xij represents

whether the variable relates to a first or second mode. We also introduce the shorthand version for the

equations in 8

x
′′

ij + ω2
jxij = ǫXi for {i, j} = {1, 1}, {2, 2}, {3, 2} (9)

The equations are now in a form which can be averaged (see for example [12–14]). We apply trans-

formations to y1, y2 and z2 in the form

xij = xijc cos(ωjτ) + xijs sin(ωjτ) (10)

x
′

ij = −ωjxijc sin(ωjτ) + ωjxijs cos(ωjτ) (11)

Applying these transforms to equation (9) and applying the condition that the derivative of the right

hand side of equation (10) must equal the right hand side of equation (11) for all three modes gives:

x
′

ijc = − ǫ
ωj

sin(ωjτ)Xi , x
′

ijs = ǫ
ωj

cos(ωjτ)Xi (12)

where we note that the transforms in equations (10) and (11) must also be applied within the functions

Xi. From inspection of the equations in 12, it can be seen that the derivative terms of xijc and xijs

are small and so over a short timespan xijc and xijs may be treated as constant [13]. We can therefore
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average equations (12) over an oscillation at frequency ω1, treating the xijc and xijs terms within Xi as

constant over the oscillation (taking the values xijca and xijsa, where subscript a indicates that they are

approximate averaged values). During the averaging process many of the terms within Xi are averaged

out indicating that although these terms affect the oscillation amplitude of xij they do not affect the

underlying amplitude trajectory of xij . Applying the technique gives the following equations for the

averaged parameters

y
′

1ca = − ǫ
ω1

(

ξy1ω
2
1y1ca + [µω2

1 − N1

4
∆]y1sa − 3

8
W11y1saY

2
1a − 1

4
W12y1sa[Y 2

2a + Z2
2a]

)

y
′

1sa = ǫ
ω1

(

[µω2
1 − N1

4
∆]y1ca − ξy1ω

2
1y1sa − 3

8
W11y1caY

2
1a − 1

4
W12y1ca[Y 2

2a + Z2
2a]

)

y
′

2ca = − ǫ
ω2

(

ξy2ω
2
2y2ca + µω2

2y2sa − 1

4
W21y2saY

2
1a − 1

8
W22y2sa[3Y 2

2a + Z2
2a] − 1

4
W22z2saC2a

)

y
′

2sa = ǫ
ω2

(

µω2
2y2ca − ξy2ω

2
2y2sa − 1

4
W21y2caY

2
1a − 1

8
W22y2ca[3Y 2

2a + Z2
2a] − 1

4
W22z2caC2a

)

z
′

2ca = − ǫ
ω2

(

ξz2ω
2
2z2ca + µω2

2z2sa − 1

4
W21z2saY

2
1a − 1

8
W22z2sa[3Z2

2a + Y 2
2a] − 1

4
W22y2saC2a

)

z
′

2sa = ǫ
ω2

(

µω2
2z2ca − ξz2ω

2
2z2sa − 1

4
W21z2caY

2
1a − 1

8
W22z2ca[3Z

2
2a + Y 2

2a] − 1

4
W22y2caC2a − 1

2
B∆ω2

2

)

(13)

where Y 2
1a = y2

1ca + y2
1sa, Y 2

2a = y2
2ca + y2

2sa, Z2
2a = z2

2ca + z2
2sa represent the modal amplitudes and

C2a = y2caz2ca + y2saz2sa represents cross terms.

2.3 Step 3 - Localised Stability

In the third step of the analysis we examine the first order differential equations (13) to assess the

stability boundary of the semi-trivial solution. The external excitation will lead directly to in-plane

motion. With increasing excitation amplitude either of the out-of-plane modes can be excited, marking

the boundary of the semi-trivial solution parameter space. For excitation of either out-of-plane modes

there must be localised instability about the zero amplitude response for that mode. To find the boundary

of the semi-trivial solution in parameter space we therefore examine the localised stability of each out-of-

plane mode about the zero point assuming that the other out-of-plane mode has zero averaged amplitude.

For the first out-of-plane mode we can write







y
′

1ca

y
′

1sa







= ǫ







−ξy1ω1 −N1∆

4ω1

− µω1 +
W12Z

2
2a

4ω1

−N1∆

4ω1

+ µω1 −
W12Z

2
2a

4ω1

−ξy1ω1













y1ca

y1sa







(14)

where we have set the second out-of-plane mode amplitudes to zero and neglected the higher order y1ca

and y1sa terms as we are considering the stability about the y1a = 0 point. The resulting eigenvalues, χ

(where we apply the scaling χ→ ǫχ), are given by

16ω2
1χ

2 + 32ξy1ω
3
1χ+W 2

12Z
4
2a − 8W12µω

2
1Z

2
2a + 16ω4

1(µ
2 + ξ2y1) −N2

1 ∆2 = 0 (15)
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We note that initially when the excitation amplitude is small (such that ∆ and Z2
2a are small) the

eigenvalues of the matrix have negative real parts and hence the stable solution set is from zero excitation

up to the boundary at which the real part of one of the eigenvalues is zero. This stability boundary is

given by:

W 2
12Z

4
2a − 8W12µω

2
1Z

2
2a + 16ω4

1(µ
2 + ξ2y1) −N2

1 ∆2 = 0 (16)

Using the same technique for the second out-of-plane mode and noting that ω2 = 2ω1 andW22 = 4W12,

the local eigenvalue equation is given by

16ω2
1χ

2 + 64ξy2ω
3
1χ+ 3W 2

12Z
4
2a − 32W12µω

2
1Z

2
2a + 64ω4

1(µ
2 + ξ2y2) = 0 (17)

As before, when the excitation amplitude is small the eigenvalues have negative real parts and hence

the stable solution set is from zero excitation up to the boundary at which the real part of one of the

eigenvalues is zero. When µ is negative the eigenvalues are stable for all Z. For positive µ the stability

boundary is defined by

3W 2
12Z

4
2a − 32W12µω

2
1Z

2
2a + 64ω4

1(µ
2 + ξ2y2) = 0 (18)

For this equation real positive solutions for Z2
2a only exist if µ ≥

√
3ξy2, and if this condition is satisfied

there are two real positive solutions for Z2
2a and hence two stability boundaries. For µ <

√
3ξy2 the second

out-of-plane mode is stable about the zero amplitude position for all Z2a and hence for all excitation

amplitudes ∆.

Finally to allow the calculation of the semi-trivial solution boundary we must derive an equation for

Z2a in terms of the excitation amplitude noting that just below a point on the solution boundary the

out-of-plane modes are zero. We can therefore reduce the equations for the in-plane mode in equation

(13) to

z
′

2ca = − ǫ
ω2

(

ξz2ω
2
2z2ca + [µω2

2 − 3

8
W22Z

2
2a]z2sa

)

z
′

2sa = ǫ
ω2

(

[µω2
2 − 3

8
W22Z

2
2a]z2ca − ξz2ω

2
2z2sa − 1

2
B∆ω2

2

)

(19)

Setting these equations to zero, the steady state amplitude of oscillation of the second in-plane mode

may we written as:

16ω4
1B

2∆2 = 64ω4
1(µ

2 + ξ2z2)Z
2
2a − 48ω2

1µW12Z
4
2a + 9W 2

12Z
6
2a (20)

Solving equation (20) with equation (16) and equation (18) allows the amplitude of excitation at

which the boundary of stability occurs for the first and second out-of-plane modes respectively to be

found as a function of the support motion frequency. We first express the semi-trivial solution boundary

8



equations, 16 and 18, and the amplitude equation 20 in nondimensional form using the parameters:

ǫs = σs

E γθ = ρgL cos(θ)σs

Ẑ2a = Z2a

L ∆̂ = ∆

L

(21)

Using these expressions and the equations in (3), the first out-of-plane boundary equation 16 may be

written as

π4Ẑ4
2a − 8ǫsµπ

2Ẑ2
2a + 16ǫ2s(µ

2 + ξ2y1) −
144

(12 + λ2)2
sin2(θ)∆̂2 = 0 (22)

and the second out-of-plane boundary equation (18) as

3π4Ẑ4
2a − 32ǫsµπ

2Ẑ2
2a + 64ǫ2s(µ

2 + ξ2y2) = 0 (23)

where Irvine’s parameter may be written as λ2 = γ2
θ/ǫs. Finally the steady state amplitude of oscillation

of the second in-plane mode equation (20) may we written as:

16ǫ2s cos2(θ)∆̂2 = 64π2ǫ2s(µ
2 + ξ22z)Ẑ

2
2a − 48π4ǫsµẐ

4
2a + 9π6Ẑ6

2a (24)

(Note that when reversing the transforms ξy1 → ǫξy1 etc the scaling term ǫ cancels out.)

3 Stability Boundaries: Theory, Simulation and Experiment

In this paper we consider a small scale, 1.98 m long, steel cable which is inclined at 20o to the

horizontal. The cable has a diameter of 0.8 mm and has a mass of 0.67 kg/m (in the experiments this

is achieved by attaching lead weights at 60 mm interval). The static tension of the cable is 205 N. The

experimental setup is shown in figure 2. This gives nondimensional parameter values: ǫs = 2.04 × 10−3

and γθ = 13.08 × 10−3.

MATLAB/Simulink was used in conjunction with a dSpace DS1104 RD controller board to implement

an actuator controller and data acquisition system. The cable is dynamically tested by a electrically driven

ball-screw actuator with an in line mounted synchronous servo motor controlled by a servo drive which

applies a displacement to the cable anchorage point in the vertical direction. The instrumentation used

consists of two load cell to measure the static tension and the dynamic force acting at the cable anchorage,

one LVDT displacement transducer to be able to track and control the actuator movement and a digital

incremental encoder used to control the initial inclination of the cable. A high speed vision system [10]

was used to measure the cable motion at nine different points both in-plane and out-of-plane.

Natural frequencies were identified experimentally using free vibration tests. They agreed well with

the theoretical values (equation (4)) and are summarised in table 1. From the experimental data the
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modal damping ratios for the first two modes over the range of oscillation amplitude of interest was

estimated to all be approximately ξ = 0.2%.

Table 1: Modal properties

ωy2 [Hz] ωz1 [Hz] ωz1 [Hz] ωz2 [Hz]

Experimental 4.4031 8.7623 4.7180 8.7665

Theoretical 4.4050 8.8101 4.7134 8.8101

Figure 2: Experimental setup

3.1 Theoretical Stability Boundaries

The theoretical stability boundaries in terms of the normalised excitation amplitude ∆/L and nor-

malised excitation frequency Ω/ω2 are found by numerically solving equations (20) and (16) for the first

out-of-plane mode and equations (20) and (18) for the second out-of-plane mode. The boundaries are

shown in figure 3. For the first out-of-plane mode there is a single boundary, for excitation levels below

this boundary the zero response of the out-of-plane mode is stable and above the zero response is unsta-

ble. For the second out-of-plane mode there are two stability boundaries for µ ≥
√

3ξ. At low excitation

levels, ∆ the mode is stable about zero amplitude response, then with increasing ∆ the lower boundary

line is crossed and a second out-of-plane modal response is expected. If ∆ is increased further so that

the second boundary level is crossed the zero amplitude modal response becomes stable again.
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Figure 3: Stability boundaries: theoretical and simulation (with zero initial conditions) Note square crosses and diagonal

crosses overlaid appear as stars.

3.2 Simulation Stability Boundaries

Simulation results were generated by using the matlab ode23s timestepping routine applied to equa-

tion (5). By inspection of equations (5), it can be seen that even when one of the out-of-plane modes

is unstable about zero amplitude no modal response will occur unless there is an external disturbance.

Therefore in the simulations the excitation is run for 25 s, by which time the directly excited second

in-plane mode response is approximately steady state. At 25 s a disturbance, in the form of a 0.02 s

pulse, is applied to the velocity of both the out-of-plane modes, and the stability of the modes is assessed.

This is done for a range of excitation amplitudes with increments of 0.2 mm. As an example, figure 4

shows the mode response when the system is excited at a frequency of Ω/ω2 = 0.97 for two amplitudes,

2.7 mm and 2.9 mm which correspond to stable and unstable y1 mode response respectively (y2 is stable

for both cases).

Simulation of stability boundary results in which the initial conditions for the second in-plane mode

are zero are shown in figure 3. For each value of Ω/ω2 excitation amplitudes (with a resolution of 0.2

mm) either side of the observed modal stability boundaries are marked, for example for Ω/ω2 = 0.97,

considering the y1 mode, 2.7 mm excitation is marked as stable and 2.9 mm as unstable. From this figure,

for the first out-of-plane mode it can be seen that there is good agreement between the theory and the

simulations for low negative µ values (such that 0.98 ≤ Ω/ω2 ≤ 0). If µ is more negative the agreement

deteriorates. This is due to the scaling in which it was assumed that ∆ was small. There is no instability

in the second mode for negative µ values as indicated by the theory. For positive µ values there is good

agreement for the upper second mode stability boundary (with the same deterioration at larger values of
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Figure 4: Simulation time responses, Ω/ω2 = 0.97, with excitation amplitudes of 2.7 and 2.9 mm

∆). However the simulations do not agree with the theory for the lower second mode and the first mode

stability boundaries.

The reason for this disagreement is that the lower boundary does not correspond to to the zero

initial condition case which is computed using the simulation. To see this, consider the equation for the

amplitude of the second mode in-plane response (with zero response in the other modes), equation (20),

which can be written

d∆

dZ2a
=

Z2a

16ω4
1B

2∆

(

64ω4
1(µ

2 + ξ2z2) − 96ω2
1µW12Z

2
2a + 27W 2

12Z
4
2a

)

(25)

There are positive real values of Z2a that satisfy d∆/dZ2a = 0 if µ ≥
√

3ξz2. This indicates that there

are multiple solutions for Z2a for a given ∆ for µ ≥
√

3ξz2 i.e. the curve has a fold. Using equation (20),

an example relationship between ∆ and Z2a is shown in figure 5 for the case where µ = 0.03. The points

at which the out-of-plane modes become unstable are indicated on the curve. The region of the curve

represented by the dashed line is unstable. This may be shown by rewriting equation 19 in matrix form:

Z
′

v2a = f(Zv2a) ≃ f(Z̄v2a) + (Zv2a − Z̄v2a)Df(Ẑv2a) (26)

where Zv2a = {z2ca , z2sa}T and Df(x) is the Jacobian of f(x). The stability of the response is

governed by the eigenvalues of the Jacobian evaluated at the possible equilibrium points, Z̄v2a, such that

f(Z̄v2a) = 0, ie along the line governed by (20). For simulations with zero initial conditions, in the

hysteretic region, where there are two stable solutions for the amplitude of the second in-plane response,

the simulation is always attracted to the low amplitude solution. Therefore instability in the out-of-plane

modes only occurs when the excitation amplitude ∆ exceeds the lower saddle-node bifurcation (point A

12



in Figure 5), at which point the amplitude of second in-plane mode jumps to the larger solution curve,

point D in Figure 5. This higher solution is beyond the instability points of the two out-of-plane modes

(i.e. point D is to the right of points B and C in Figure 5) so both modes go unstable at the jump from

the lower bifurcation point (i.e. A to D in Figure 5). From equation (25) the saddle-node bifurcation

(point A) occurs when:

Z2
2a =

8ω2
1µ

9W12



2 −

√

1 − 3

(

ξz2

µ

)2



 (27)

Figure 6 shows the turning point in terms of ∆ (using equation 20 and 27) compared with the simulation

data assuming zero initial conditions, it can be seen that there is reasonably good agreement.
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Figure 5: Response of the second in-plane mode (assuming other modes remain stable) when excited at frequency Ω/ω2 =

1.03 and amplitude ∆
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Figure 6: Simulation stability points for positive µ compared with the turning point (equation 27)
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To simulate the theoretical instability boundary which exists a point B in Figure 5, the system must

oscillate at the larger Z2a amplitude solution before the out-of-plane disturbance is applied. This was

achieved in the numerical simulation by initially setting an excitation amplitude higher than the turning

point value and reducing it to the desired level after 15s. After 25s a pulse disturbance was applied to the

out-of-plane modes to test for modal instability about the zero response position. The simulation results

are shown in figure ??. It can be seen that there is excellent agreement with the theoretical predictions.
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Figure 7: Simulation stability points for positive µ when the second in-plane response is at the higher amplitude solution

3.3 Experimental Stability Boundaries

In the experimental tests it was found that a small amount of oscillation (around 1 mm amplitude)

of the second out-of-plane mode was present throughout all tests. Growth in amplitude of this mode was

not observed to take place before instability of the first out-of-plane mode. The system was allowed 400

periods of external excitation for the transient response to decay. After the 400 periods a disturbance was

introduced, in the form of a slight impulse applied horizontally to the mid-span lead weight. The out-

of-plane amplitude of oscillation was then monitored for a further 400 periods to ascertain the stability

of the mode. This procedure was repeated for increasing amplitudes of excitation up to the instability

point for a range of forcing frequencies up to Ω/ω2 < 1.04.

Figure 8 shows the experimental stability points, which also show very good agreement with the

theoretical boundary for µ < 0.02. Above µ = 0.02 the results diverge from the theoretical stability

values, as with the simulations this is because the initial conditions are zero and so the modal instability

only occurs after the excitation amplitude exceeds the turning point defined by equation (27). It can be

seen that this relationship agrees well with the experimental results for µ > 0.02.
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Figure 8: Theoretical and experimental stability boundaries

3.4 Discussion

The simulation and experimental observations give very goof agreement well with the new theoretical

model. We have demonstrated how t he out-of-plane modes can go unstable at the theoretical stability

boundaries defined by equations (16) and (19) for the first out-of-plane mode and by equations (18) and

(19) for the second out-of-plane mode. The nondimensional equivalent to these equations are equations

(22) and (24) and equations (23) and (24) respectively. However when µ ≥
√

3ξz2 there are two solutions

for Z2a in the hysteretic region. This fold in the relationship between Z2a and ∆ can have the effect of

raising the excitation level required for the onset of vibrations in the out-of-plane modes as the instability

occurs on the larger Z2a branch (see figure 5 for the case where µ = 0.03). If for example the cable is

initially considered to have zero initial conditions then the excitation level must exceed the first turning

point, defined by equation (27), in the relationship between Z2a and ∆ before the larger Z2a branch is

reached. If this turning point occurs at a larger ∆ than the instability point of either of the out-of-plane

modes then out-of-plane oscillations in that mode are only observed at ∆ values exceeding the turning

point. For the cable considered in section 3, the resulting instability boundaries are shown in figure

8. The dotted line indicates the turning point which can lift the stability boundary depending on the

initial conditions. We note that in the region where the turning point is below the theoretical stability

boundaries, the turning point relationship does not effect the ∆ required for instability of the semi-trivial

solution – the theoretical stability boundaries are conservative.
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4 Parametric Study of Stability Boundaries

The most widely used stabilities curves when studying resonance 2:1 are the ones presented in [2]

and are used in practical bridge design recommendations, such as that produces by Setra [15], to provide

guidance as to whether the expected cable anchorage motions would be large enough to initiate parametric

excitation. The equations of the stability boundary in both works is found by studying a linear one-degree-

of-freedom Mathieu-Hill type equation. Since they reduce the study to a single degree of freedom they

calculate y1 and y2 boundaries separately, the first in 2:1 resonance, the second excited in 1:1 resonance.

We start comparing y1 stability regions. Eq 28 shows the stability boundary given by [2], Eq 30 shows

the one given in the Setra manual [15] for 2:1 resonance.

∆̂ = 2
σs

Esin(θ)

√

[

Ω

2ω1

2

− 1

]2

+

[

2ξn
Ω

ω1

]2

(28)

∆̂ = 2
σs

Esin(θ)

√

[

Ω

2ω1

2

− 1

]2

+ 4ξ2n (29)

The resulting boundary regions plot is almost identical, in both cases, the minimum amplitude at

which parametric resonance occurs is ∆̂ =
4ξǫs
sin(θ)

when Ω/2ω1 = 1, i.e, µ = 0. We now compare our

results with the boundary proposed in [15].

In figure 9 comparison between our analytical model and [15] is shown. The minimum amplitude the

minimum amplitude for which parametric resonance occurs is ∆̂ =
4ξǫs
sin(θ)

for both models, but while [15]

predicts it to occur at Ω/2ω1 = 1, averaging predicts this minimum to be shifted to a slightly higher

frequency. This shifting of the minimum and the reduction in amplitude of the higher frequency sides of

the stability boundary are a direct consequence of the hardening that cables suffer due to the geometric

cubic nonlinearity. This nonlinearity is not taken into account in previous stability models, such as [2,15],

and as a result the match with experimental data (as shown in the previous section) will be reduced. The

reduction in amplitude of the curve shows clearly that parametric resonance can occur for much smaller

values that previously predicted [2, 15] when Ω/2ω1 > 1.

By substituting ∆̂ =
4ξǫs
sin(θ)

into equations (22) and (24) we can obtain the following cubic equation

to calculate the shifting of the minimum of the stability curve.

µ3 + 7Qξµ2 +
[

ξ2 − 15Q2ξ2
]

µ+

[

9Q3ξ3 + 4Qξ2 − 4ǫsξ
2

tan2(θ)

]

= 0 (30)

whereQ =
12

12 + λ2
. Figure 10 shows how the values of µ evolve as the non dimensional system parameters

are changed. Figure 11 shows how the stability regions change their shape for different groups of cable

16



0.95 0.975 1 1.025 1.05
0

0.5

1

1.5

2
x 10

−3

Ω/ω
2

∆

Averaging
Setra
4ξε

s
/sin(θ)

 ^

Figure 9: Setra recommendations [15] stability boundary and proposed stability boundaries
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Figure 11: Stability regions for different cable nondimensional parameters.
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Figure 12: Stability regions for different cable nondimensional parameters.

nondimensional parameters.

Neither [2] nor [15] give a explicit equation to calculate the y2 stability region. It is commonly assumed

than resonance 1:1 is not likely to appear since the values of forcing amplitude necessary for it to occur

are very high. That will only be the case if we reduce the problem to a SDOF case. We can solve

the stability problem by applying Harmonic Balance Method (for the 1:1 resonance, we can not apply

first order averaging, even second order averaging gives only zero since is eliminated as a lower order

resonance, for most systems resonance 1:1 is a rather trivial case). Redefining our problem as SDOF, the

y2 stability boundary can be calculated by applying the Harmonic Balance Method to equation.

ÿ2 + h2ẏ2 +
(

ω2
2 +N2δ

)

y2 = 0 (31)

Following the approach considered in [5] we solve the problem in the eigenvalue form. Taking three

terms of the Fourier expansion one obtains an non-symmetric 14x14 matrix. If the subtraction of any

eigenvalue from the damping constant leaves a positive real part, the corresponding trivial solution is

unbounded and the solution is unstable. See [5] for more information.

Figure 12(a) shows comparison between the y2 stability boundary calculated with a SDOF model

and applying the harmonic balance method with the three mode model we proposed in this work, i.e.

3DOF using averaging methods. The curve corresponding to the SDOF model is much higher that the

one calculated by the 3DOF — so much so that they cannot easily be plotted at the same scale, Figure

12(a). For frequencies above resonance µ > 0the modal interaction is clearly a more important effect

that 1:1 resonance. For values µ < 0 the 1:1 resonance can desestabilize the y2 mode (modal interaction
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can not for this range of values) but the amplitude threshold is high (higher than the for y1 in the same

range of values), see Figure 12(b).

Conclusions

In this paper we have presented an extended three mode modal for the vibration of an inclined cable

with harmonic support excitation at the lower end of the cable. By including the model coupling terms,

and using averaging, the three mode model has been used to explain some subtle dynamic behaviour

which occurs around the 2:1 internal resonance of the in and out-of-plane modes. In particular the effect

of the hysteretic jump on the numerical and experimental tracking of the lower stability branch for y2

solutions has been explained in detail.

As part of this study as series of experimental tests were carried out using a scaled inclined cable with

an actuator to give vertical excitation input at the lower support. Tests were carried out to observe the

onset of oscillations in the out-of-plane modes, and these were compared with analysis and simulation from

the three mode model. Close agreement was found between the experimental and numerical results, giving

a high degree of confidence in the extended three mode model. This also demonstrates the importance of

including the nonlinear coupling terms when studying the stability boundaries close to the 2:1 resonance

region. Currently these coupling effects are not usually considered, but the results from this study show

that the onset of oscillations in the out-of-plane modes can occur at lower amplitudes of excitation than

predicted by previous models without coupling.
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