58 research outputs found
Characterising droughts in Central America with uncertain hydro-meteorological data
Central America is frequently affected by droughts that cause significant socio-economic and environmental problems. Drought characterisation, monitoring and forecasting are potentially useful to support water resource management. Drought indices are designed for these purposes, but their ability to characterise droughts depends on the characteristics of the regional climate and the quality of the available data. Local comprehensive and high-quality observational networks of meteorological and hydrological data are not available, which limits the choice of drought indices and makes it important to assess available datasets. This study evaluated which combinations of drought index and meteorological dataset were most suitable for characterising droughts in the region. We evaluated the standardised precipitation index (SPI), a modified version of the deciles index (DI), the standardised precipitation evapotranspiration index (SPEI) and the effective drought index (EDI). These were calculated using precipitation data from the Climate Hazards Group Infra-Red Precipitation with Station (CHIRPS), the CRN073 dataset, the Climate Research Unit (CRU), ECMWF Reanalysis (ERA-Interim) and a regional station dataset, and temperature from the CRU and ERA-Interim datasets. The gridded meteorological precipitation datasets were compared to assess how well they captured key features of the regional climate. The performance of all the drought indices calculated with all the meteorological datasets was then evaluated against a drought index calculated using river discharge data. Results showed that the selection of database was more important than the selection of drought index and that the best combinations were the EDI and DI calculated with CHIRPS and CRN073. Results also highlighted the importance of including indices like SPEI for drought assessment in Central America.Universidad de Costa Rica/[805-B0-810]/UCR/Costa RicaUniversidad de Costa Rica/[805-A9-532]/UCR/Costa RicaUniversidad de Costa Rica/[805-B3-600]/UCR/Costa RicaUniversidad de Costa Rica/[805-B0-065]/UCR/Costa RicaUniversidad de Costa Rica/[805-B3-413]/UCR/Costa RicaUniversidad de Costa Rica/[805-B4-227]/UCR/Costa RicaUniversidad de Costa Rica/[805-B4-228]/UCR/Costa RicaUniversidad de Costa Rica/[805-B5-295]/UCR/Costa RicaUppsala University/[54100006]//SueciaMarie Curie Intra-European Fellowship/[No.329762]//EuropaUCR::VicerrectorĂa de InvestigaciĂłn::Unidades de InvestigaciĂłn::Ciencias BĂĄsicas::Centro de Investigaciones GeofĂsicas (CIGEFI)UCR::VicerrectorĂa de Docencia::Ciencias BĂĄsicas::Facultad de Ciencias::Escuela de FĂsic
Elongation, proliferation & migration differentiate endothelial cell phenotypes and determine capillary sprouting
<p>Abstract</p> <p>Background</p> <p>Angiogenesis, the growth of capillaries from preexisting blood vessels, has been extensively studied experimentally over the past thirty years. Molecular insights from these studies have lead to therapies for cancer, macular degeneration and ischemia. In parallel, mathematical models of angiogenesis have helped characterize a broader view of capillary network formation and have suggested new directions for experimental pursuit. We developed a computational model that bridges the gap between these two perspectives, and addresses a remaining question in angiogenic sprouting: how do the processes of endothelial cell elongation, migration and proliferation contribute to vessel formation?</p> <p>Results</p> <p>We present a multiscale systems model that closely simulates the mechanisms underlying sprouting at the onset of angiogenesis. Designed by agent-based programming, the model uses logical rules to guide the behavior of individual endothelial cells and segments of cells. The activation, proliferation, and movement of these cells lead to capillary growth in three dimensions. By this means, a novel capillary network emerges out of combinatorially complex interactions of single cells. Rules and parameter ranges are based on literature data on endothelial cell behavior in vitro. The model is designed generally, and will subsequently be applied to represent species-specific, tissue-specific in vitro and in vivo conditions.</p> <p>Initial results predict tip cell activation, stalk cell development and sprout formation as a function of local vascular endothelial growth factor concentrations and the Delta-like 4 Notch ligand, as it might occur in a three-dimensional in vitro setting. Results demonstrate the differential effects of ligand concentrations, cell movement and proliferation on sprouting and directional persistence.</p> <p>Conclusion</p> <p>This systems biology model offers a paradigm closely related to biological phenomena and highlights previously unexplored interactions of cell elongation, migration and proliferation as a function of ligand concentration, giving insight into key cellular mechanisms driving angiogenesis.</p
Genome-wide association of multiple complex traits in outbred mice by ultra low-coverage sequencing
The authors wish to acknowledge excellent technical assistance from A. Kurioka, L. Swadling, C. de Lara, J. Ussher, R. Townsend, S. Lionikaite, A.S. Lionikiene, R. Wolswinkel and I. van der Made. We would like to thank T.M. Keane and A.G. Doran for their help in annotating variants and adding the FVB/NJ strain to the MGP. We thank the High-Throughput Genomics Group at the Wellcome Trust Centre for Human Genetics and the Wellcome Trust Sanger Institute for the generation of the sequencing data. This work was funded by Wellcome Trust grant 090532/Z/09/Z (J.F.). Primary phenotyping of the mice was supported by the Mary Lyon Centre and Mammalian Genetics Unit (Medical Research Council, UK Hub grant G0900747 91070 and Medical Research Council, UK grant MC U142684172). D.A.B. acknowledges support from NIH R01AR056280. The sleep work was supported by the state of Vaud (Switzerland) and the Swiss National Science Foundation (SNF 14694 and 136201 to P.F.). The ECG work was supported by the Netherlands CardioVascular Research Initiative (Dutch Heart Foundation, Dutch Federation of University Medical Centres, Netherlands Organization for Health Research and Development and the Royal Netherlands Academy of Sciences) PREDICT project, InterUniversity Cardiology Institute of the Netherlands (ICIN; 061.02; C.A.R. and C.R.B.). N.C. is supported by the Agency of Science, Technology and Research (A*STAR) Graduate Academy. R.W.D. is supported by a grant from the Wellcome Trust (097308/Z/11/Z).Peer reviewedPostprin
Evaluation of appendicitis risk prediction models in adults with suspected appendicitis
Background
Appendicitis is the most common general surgical emergency worldwide, but its diagnosis remains challenging. The aim of this study was to determine whether existing risk prediction models can reliably identify patients presenting to hospital in the UK with acute right iliac fossa (RIF) pain who are at low risk of appendicitis.
Methods
A systematic search was completed to identify all existing appendicitis risk prediction models. Models were validated using UK data from an international prospective cohort study that captured consecutive patients aged 16â45âyears presenting to hospital with acute RIF in March to June 2017. The main outcome was best achievable model specificity (proportion of patients who did not have appendicitis correctly classified as low risk) whilst maintaining a failure rate below 5 per cent (proportion of patients identified as low risk who actually had appendicitis).
Results
Some 5345 patients across 154 UK hospitals were identified, of which twoâthirds (3613 of 5345, 67·6 per cent) were women. Women were more than twice as likely to undergo surgery with removal of a histologically normal appendix (272 of 964, 28·2 per cent) than men (120 of 993, 12·1 per cent) (relative risk 2·33, 95 per cent c.i. 1·92 to 2·84; Pâ<â0·001). Of 15 validated risk prediction models, the Adult Appendicitis Score performed best (cutâoff score 8 or less, specificity 63·1 per cent, failure rate 3·7 per cent). The Appendicitis Inflammatory Response Score performed best for men (cutâoff score 2 or less, specificity 24·7 per cent, failure rate 2·4 per cent).
Conclusion
Women in the UK had a disproportionate risk of admission without surgical intervention and had high rates of normal appendicectomy. Risk prediction models to support shared decisionâmaking by identifying adults in the UK at low risk of appendicitis were identified
Cross-categorization of legal concepts across boundaries of legal systems: in consideration of inferential links
This work contrasts Giovanni Sartorâs view of inferential semantics of legal concepts (Sartor in Artif Intell Law 17:217â251, 2009) with a probabilistic model of theory formation (Kemp et al. in Cognition 114:165â196, 2010). The work further explores possibilities of implementing Kempâs probabilistic model of theory formation in the context of mapping legal concepts between two individual legal systems. For implementing the legal concept mapping, we propose a cross-categorization approach that combines three mathematical models: the Bayesian Model of Generalization (BMG; Tenenbaum and Griffiths in Behav Brain Sci 4:629â640, 2001), the probabilistic model of theory formation, i.e., the Infinite Relational Model (IRM) first introduced by Kemp et al. (The twenty-first national conference on artificial intelligence, 2006, Cognition 114:165â196, 2010) and its extended model, i.e., the normal-IRM (n-IRM) proposed by Herlau et al. (IEEE International Workshop on Machine Learning for Signal Processing, 2012). We apply our cross-categorization approach to datasets where legal concepts related to educational systems are respectively defined by the Japanese- and the Danish authorities according to the International Standard Classification of Education. The main contribution of this work is the proposal of a conceptual framework of the cross-categorization approach that, inspired by Sartor (Artif Intell Law 17:217â251, 2009), attempts to explain reasonerâs inferential mechanisms
- âŠ