148 research outputs found
Evaluation of rate law approximations in bottom-up kinetic models of metabolism.
BackgroundThe mechanistic description of enzyme kinetics in a dynamic model of metabolism requires specifying the numerical values of a large number of kinetic parameters. The parameterization challenge is often addressed through the use of simplifying approximations to form reaction rate laws with reduced numbers of parameters. Whether such simplified models can reproduce dynamic characteristics of the full system is an important question.ResultsIn this work, we compared the local transient response properties of dynamic models constructed using rate laws with varying levels of approximation. These approximate rate laws were: 1) a Michaelis-Menten rate law with measured enzyme parameters, 2) a Michaelis-Menten rate law with approximated parameters, using the convenience kinetics convention, 3) a thermodynamic rate law resulting from a metabolite saturation assumption, and 4) a pure chemical reaction mass action rate law that removes the role of the enzyme from the reaction kinetics. We utilized in vivo data for the human red blood cell to compare the effect of rate law choices against the backdrop of physiological flux and concentration differences. We found that the Michaelis-Menten rate law with measured enzyme parameters yields an excellent approximation of the full system dynamics, while other assumptions cause greater discrepancies in system dynamic behavior. However, iteratively replacing mechanistic rate laws with approximations resulted in a model that retains a high correlation with the true model behavior. Investigating this consistency, we determined that the order of magnitude differences among fluxes and concentrations in the network were greatly influential on the network dynamics. We further identified reaction features such as thermodynamic reversibility, high substrate concentration, and lack of allosteric regulation, which make certain reactions more suitable for rate law approximations.ConclusionsOverall, our work generally supports the use of approximate rate laws when building large scale kinetic models, due to the key role that physiologically meaningful flux and concentration ranges play in determining network dynamics. However, we also showed that detailed mechanistic models show a clear benefit in prediction accuracy when data is available. The work here should help to provide guidance to future kinetic modeling efforts on the choice of rate law and parameterization approaches
Unconstraining the Unhiggs
We investigate whether or not perturbative unitarity is preserved in the
Unhiggs model for the scattering process of heavy quarks and longitudinal gauge
bosons . With the Yukawa coupling given in the
original formulation of the Unhiggs model, the model preserves unitarity for
Unhiggs scaling dimensions . We examine the LHC phenomenology that
is implied by the Unhiggs model in this parameter range in detail and discuss
to what extent the LHC can test if an excess is measured in the
phenomenologically clean channel in the future or if the LHC measurement
remains consistent with the background. We then make use of the AdS/CFT
correspondence to derive a new Yukawa coupling that is conformally invariant at
high energies, and show that with this Yukawa coupling the theory is unitary
for .Comment: 19 pages, 10 figures; typos corrected, version published by PR
An overview of the evolution of infrared spectroscopy applied to bacterial typing
The sustained emergence of new declared bacterial species makes typing a continuous challenge for microbiologists. Molecular biology techniques have a very significant role in the context of bacterial typing, but they are often very laborious, time consuming and eventually fail when dealing with very closely related species. Spectroscopic-based techniques appear in some situations as a viable alternative to molecular methods with advantages in terms of analysis time and cost. Infrared and mass spectrometry are among the most exploited techniques in this context: particularly, infrared spectroscopy emerged as a very promising method with multiple reported successful applications. This article presents a systematic review on infrared spectroscopy applications for bacterial typing, highlighting fundamental aspects of infrared spectroscopy, a detailed literature review (covering different taxonomic levels and bacterial species), advantages and limitations of the technique over molecular biology methods and a comparison with other competing spectroscopic techniques such as MALDI-TOF MS, Raman and intrinsic fluorescence. Infrared spectroscopy possesses a high potential for bacterial typing at distinct taxonomic levels and worthy of further developments and systematization. The development of databases appears fundamental towards the establishment of infrared spectroscopy as a viable method for bacterial typing.FCT -Fundação para a Ciência e a Tecnologia(PT2020 UID/QUI/50006/2013)info:eu-repo/semantics/publishedVersio
Current trends in drug metabolism and pharmacokinetics.
Pharmacokinetics (PK) is the study of the absorption, distribution, metabolism, and excretion (ADME) processes of a drug. Understanding PK properties is essential for drug development and precision medication. In this review we provided an overview of recent research on PK with focus on the following aspects: (1) an update on drug-metabolizing enzymes and transporters in the determination of PK, as well as advances in xenobiotic receptors and noncoding RNAs (ncRNAs) in the modulation of PK, providing new understanding of the transcriptional and posttranscriptional regulatory mechanisms that result in inter-individual variations in pharmacotherapy; (2) current status and trends in assessing drug-drug interactions, especially interactions between drugs and herbs, between drugs and therapeutic biologics, and microbiota-mediated interactions; (3) advances in understanding the effects of diseases on PK, particularly changes in metabolizing enzymes and transporters with disease progression; (4) trends in mathematical modeling including physiologically-based PK modeling and novel animal models such as CRISPR/Cas9-based animal models for DMPK studies; (5) emerging non-classical xenobiotic metabolic pathways and the involvement of novel metabolic enzymes, especially non-P450s. Existing challenges and perspectives on future directions are discussed, and may stimulate the development of new research models, technologies, and strategies towards the development of better drugs and improved clinical practice
The human exosome: an autoantigenic complex of exoribonucleases in myositis and scleroderma
The anti-PM/Scl autoantibodies are known to characterize a subset of autoimmune patients with myositis, scleroderma (Scl), and the PM/Scl overlap syndrome. The major autoantigens that are recognized by anti-PM/Scl autoantibodies are designated PM/Scl-100 and PM/Scl-75. These autoantigens have been reported to associate into a large complex consisting of 11 to 16 proteins and to play a role in ribosome synthesis. Recently, it was discovered that the PM/Scl complex is the human counterpart of the yeast (Saccharomyces cerevisiae) exosome, which is an RNA-processing complex consisting of 11 3' → 5' exoribonucleases. To date, 10 human exosome components have been identified, although only some of these were studied in more detail. In this review, we discuss some recent advances in the characterization of the PM/Scl complex
Disulfiram overcomes bortezomib and cytarabine resistance in Down-syndrome-associated acute myeloid leukemia cells
Within-trial economic evaluation of diabetes-specific cognitive behaviour therapy in patients with type 2 diabetes and subthreshold depression
<p>Abstract</p> <p>Background</p> <p>Despite the high prevalence of subthreshold depression in patients with type 2 diabetes, evidence on cost-effectiveness of different therapy options for these patients is currently lacking.</p> <p>Methods/Design</p> <p>Within-trial economic evaluation of the diabetes-specific cognitive behaviour therapy for subthreshold depression. Patients with diabetes and subthreshold depression are randomly assigned to either 2 weeks of diabetes-specific cognitive behaviour group therapy (n = 104) or to standard diabetes education programme only (n = 104). Patients are followed for 12 months. During this period data on total health sector costs, patient costs and societal productivity costs are collected in addition to clinical data. Health related quality of life (the SF-36 and the EQ-5D) is measured at baseline, immediately after the intervention, at 6 and at 12 months after the intervention. Quality adjusted life years (QALYs), and cumulative costs will be estimated for each arm of the trial. Cost-effectiveness of the diabetes-specific cognitive behaviour group therapy will be analysed from the perspective of the German statutory health insurance and from the societal perspective. To this end, incremental cost-effectiveness ratio (ICER) in terms of cost per QALY gained will be calculated.</p> <p>Discussion</p> <p>Some methodological issues of the described economic evaluation are discussed.</p> <p>Trial registration</p> <p>The trial has been registered at the Clinical Trials Register (NCT01009138).</p
Theories in Business and Information Systems Engineering
Even though the idea of science enjoys an impressive reputation, there seems to be no precise conception of science. On the one hand, there is no unified definition of the extension of activities subsumed under the notion of science. According to the narrow conception that is common in Anglo-Saxon countries, science is restricted to those disciplines that investigate nature and aim at explanation and prediction of natural phenomena. A wider conception that can be found in various European countries includes social sciences, the humanities and engineering. On the other hand and related to the first aspect, there is still no general consensus on the specific characteristics of scientific discoveries and scientific knowledge
Changes in SAM2 expression affect lactic acid tolerance and lactic acid production in Saccharomyces cerevisiae
- …
