1,396 research outputs found

    Squeezed States and Helmholtz Spectra

    Get PDF
    The 'classical interpretation' of the wave function psi(x) reveals an interesting operational aspect of the Helmholtz spectra. It is shown that the traditional Sturm-Liouville problem contains the simplest key to predict the squeezing effect for charged particle states.Comment: 10 pages, Latex, 3 gzip-compressed figures in figh.tar.g

    Neuron–astrocyte interactions in the medial nucleus of the trapezoid body

    Get PDF
    The calyx of Held (CoH) synapse serves as a model system to analyze basic mechanisms of synaptic transmission. Astrocyte processes are part of the synaptic structure and contact both pre- and postsynaptic membranes. In the medial nucleus of the trapezoid body (MNTB), midline stimulation evoked a current response that was not mediated by glutamate receptors or glutamate uptake, despite the fact that astrocytes express functional receptors and transporters. However, astrocytes showed spontaneous Ca2+ responses and neuronal slow inward currents (nSICs) were recorded in the postsynaptic principal neurons (PPNs) of the MNTB. These currents were correlated with astrocytic Ca2+ activity because dialysis of astrocytes with BAPTA abolished nSICs. Moreover, the frequency of these currents was increased when Ca2+ responses in astrocytes were elicited. NMDA antagonists selectively blocked nSICs while D-serine degradation significantly reduced NMDA-mediated currents. In contrast to previous studies in the hippocampus, these NMDA-mediated currents were rarely synchronized

    Replication fork collisions cause pathological chromosomal amplification in cells lacking RecG DNA translocase

    Get PDF
    Duplication and transmission of chromosomes require precise control of chromosome replication and segregation. Here we present evidence that RecG is a major factor influencing these processes in bacteria. We show that the extensive DnaA-independent stable DNA replication observed without RecG can lead to replication of any area of the chromosome. This replication is further elevated following irradiation with UV light and appears to be perpetuated by secondary events that continue long after the elimination of UV lesions. The resulting pathological cascade is associated with an increased number of replication forks traversing the chromosome, sometimes with extensive regional amplification of the chromosome, and with the accumulation of highly branched DNA intermediates containing few Holliday junctions. We propose that the cascade is triggered by replication fork collisions that generate 3′ single-strand DNA flaps, providing sites for PriA to initiate re-replication of the DNA and thus to generate linear duplexes that provoke recombination, allowing priming of even further replication. Our results shed light on why termination of replication in bacteria is normally limited to a single encounter of two forks and carefully orchestrated within a restricted area, and explain how a system of multiple forks and random termination can operate in eukaryotes

    Infinite motion and 2-distinguishability of graphs and groups

    Get PDF
    A group A acting faithfully on a set X is 2-distinguishable if there is a 2-coloring of X that is not preserved by any nonidentity element of A, equivalently, if there is a proper subset of X with trivial setwise stabilizer. The motion of an element a in A is the number of points of X that are moved by a, and the motion of the group A is the minimal motion of its nonidentity elements. When A is finite, the Motion Lemma says that if the motion of A is large enough (specifically at least 2 log_2 |A|), then the action is 2-distinguishable. For many situations where X has a combinatorial or algebraic structure, the Motion Lemma implies that the action of Aut(X) on X is 2-distinguishable in all but finitely many instances. We prove an infinitary version of the Motion Lemma for countably infinite permutation groups, which states that infinite motion is large enough to guarantee 2-distinguishability. From this we deduce a number of results, including the fact that every locally finite, connected graph whose automorphism group is countably infinite is 2-distinguishable. One cannot extend the Motion Lemma to uncountable permutation groups, but nonetheless we prove that (under the permutation topology) every closed permutation group with infinite motion has a dense subgroup which is 2-distinguishable. We conjecture an extension of the Motion Lemma which we expect holds for a restricted class of uncountable permutation groups, and we conclude with a list of open questions. The consequences of our results are drawn for orbit equivalence of infinite permutation groups

    SpxA1 Involved in Hydrogen Peroxide Production, Stress Tolerance and Endocarditis Virulence in Streptococcus sanguinis

    Get PDF
    Streptococcus sanguinis is one of the most common agents of infective endocarditis. Spx proteins are a group of global regulators that negatively or positively control global transcription initiation. In this study, we characterized the spxA1 gene in S. sanguinis SK36. The spxA1 null mutant displayed opaque colony morphology, reduced hydrogen peroxide (H2O2) production, and reduced antagonistic activity against Streptococcus mutans UA159 relative to the wild type strain. The ΔspxA1 mutant also demonstrated decreased tolerance to high temperature, acidic and oxidative stresses. Further analysis revealed that ΔspxA1 also exhibited a ∼5-fold reduction in competitiveness in an animal model of endocarditis. Microarray studies indicated that expression of several oxidative stress genes was downregulated in the ΔspxA1 mutant. The expression of spxB and nox was significantly decreased in the ΔspxA1 mutant compared with the wild type. These results indicate that spxA1 plays a major role in H2O2 production, stress tolerance and endocarditis virulence in S. sanguinis SK36. The second spx gene, spxA2, was also found in S. sanguinis SK36. The spxA2 null mutant was found to be defective for growth under normal conditions and showed sensitivity to high temperature, acidic and oxidative stresses

    The principal neurons of the medial nucleus of the trapezoid body and NG2+ glial cells receive coordinated excitatory synaptic input

    Get PDF
    Glial cell processes are part of the synaptic structure and sense spillover of transmitter, while some glial cells can even receive direct synaptic input. Here, we report that a defined type of glial cell in the medial nucleus of the trapezoid body (MNTB) receives excitatory glutamatergic synaptic input from the calyx of Held (CoH). This giant glutamatergic terminal forms an axosomatic synapse with a single principal neuron located in the MNTB. The NG2 glia, as postsynaptic principal neurons, establish synapse-like structures with the CoH terminal. In contrast to the principal neurons, which are known to receive excitatory as well as inhibitory inputs, the NG2 glia receive mostly, if not exclusively, α-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid receptor–mediated evoked and spontaneous synaptic input. Simultaneous recordings from neurons and NG2 glia indicate that they partially receive synchronized spontaneous input. This shows that an NG2+ glial cell and a postsynaptic neuron share presynaptic terminals
    corecore