107 research outputs found

    The Influence of Water and Gas Exchange Parameters on Grafted Grapevines Under Conditions of Moisture Stress

    Get PDF
    Among the four grape varieties that were subjected to moisture stress, Flame Seedless and Thompson Seedlessrecorded the highest relative water content, osmotic potential and water potential compared to Sharad Seedless andTas-A-Ganesh. Similarly, Flame Seedless and Thompson Seedless recorded the maximum rate of photosynthesis,the minimum transpiration rate, and thus increased water-use efficiency. Sharad Seedless on its own root had thelowest water-use efficiency. Budding the respective four varieties on different rootstocks and subjecting them tomoisture stress resulted in significant differences in various physiological parameters that influence water-use efficiency.When Sharad Seedless was budded on Dog Ridge rootstock and subjected to moisture stress, it resulted inincreased water potential, osmotic potential and water use efficiency compared to other rootstocks. This suggeststhat rootstocks have an influence on the physiological mechanisms of scion leaves. Hence, the genotypic selection ofrootstocks for establishing vineyards under drought conditions is of great importanc

    Adaptive Finite-element Analysis of Plastic Deformation of Plates under Projectile Impact

    Get PDF
    This paper deals with the finite-element analysis of plastic deformation of plates during normal impact of projectile on plates, The finite element method implemented here is based on the flow formulation of plasticity. During projectile impact the geometrical configuration of domain is progressively altered that generally causes distortion of mesh. It affects the accuracy of finite-element solution, Hence, a posteriori error estimation for the computed finite-element solution has been incorporated to capture the zones of high stress and strain gradients. The h-refinement of the mesh is carried out over such domain to limit the solution error, Two projectile impact problems on a circular aluminium plate-one by a blunt-end projectile and another by a hemi-spherical-headed projectile-are analysed to illustrate the proposed method

    Study of performance of Adiabatic Carry Look Ahead Adder Using Dynamic CMOS Logic

    Get PDF
    Performance of adiabatic carry look ahead adder using dynamic CMOS are studied and compared with Adiabatic carry look ahead adder using Pass Transistor. adiabatic carry look ahead adder using pass transistor has higher delay and lower power consumption while adiabatic carry look ahead adder using dynamic cmos logic has lower power dissipation and higher speed. adiabatic carry look ahead adder using dynamic cmos are design using 180 nm cmos technology and compared power dissipation and delay with respect to supply voltage and frequency. simulation result show that power dissipation of carry look ahead adder using dynamic cmos has higher performance comparison adiabatic CLA using pass transistor. simulation result show that adiabatic CLA using dynamic cmos reduce the power consumption 45% and delay reduce to 70% comparison to adiabatic CLA using pass transistor

    Quadrature-dependent Bogoliubov transformations and multiphoton squeezed states

    Get PDF
    We introduce a linear, canonical transformation of the fundamental single--mode field operators aa and a†a^{\dagger} that generalizes the linear Bogoliubov transformation familiar in the construction of the harmonic oscillator squeezed states. This generalization is obtained by adding to the linear transformation a nonlinear function of any of the fundamental quadrature operators X1X_{1} and X2X_{2}, making the original Bogoliubov transformation quadrature--dependent. Remarkably, the conditions of canonicity do not impose any constraint on the form of the nonlinear function, and lead to a set of nontrivial algebraic relations between the cc--number coefficients of the transformation. We examine in detail the structure and the properties of the new quantum states defined as eigenvectors of the transformed annihilation operator bb. These eigenvectors define a class of multiphoton squeezed states. The structure of the uncertainty products and of the quasiprobability distributions in phase space shows that besides coherence properties, these states exhibit a squeezing and a deformation (cooling) of the phase--space trajectories, both of which strongly depend on the form of the nonlinear function. The presence of the extra nonlinear term in the phase of the wave functions has also relevant consequences on photon statistics and correlation properties. The non quadratic structure of the associated Hamiltonians suggests that these states be generated in connection with multiphoton processes in media with higher nonlinearities.Comment: 16 pages, 15 figure

    Bonding mechanism from the impact of thermally sprayed solid particles

    No full text
    Power particles are mainly in solid state prior to impact on substrates from high velocity oxy-fuel (HVOF) thermal spraying. The bonding between particles and substrates is critical to ensure the quality of coating. Finite element analysis (FEA) models are developed to simulate the impingement process of solid particle impact on substrates. This numerical study examines the bonding mechanism between particles and substrates and establishes the critical particle impact parameters for bonding. Considering the morphology of particles, the shear-instability–based method is applied to all the particles, and the energy-based method is employed only for spherical particles. The particles are given the properties of widely used WC-Co powder for HVOF thermally sprayed coatings. The numerical results confirm that in the HVOF process, the kinetic energy of the particle prior to impact plays the most dominant role in particle stress localization and melting of the interfacial contact region. The critical impact parameters, such as particle velocity and temperature, are shown to be affected by the shape of particles, while higher impact velocity is required for highly nonspherical powder

    Designing a broad-spectrum integrative approach for cancer prevention and treatment

    Get PDF
    Targeted therapies and the consequent adoption of "personalized" oncology have achieved notablesuccesses in some cancers; however, significant problems remain with this approach. Many targetedtherapies are highly toxic, costs are extremely high, and most patients experience relapse after a fewdisease-free months. Relapses arise from genetic heterogeneity in tumors, which harbor therapy-resistantimmortalized cells that have adopted alternate and compensatory pathways (i.e., pathways that are notreliant upon the same mechanisms as those which have been targeted). To address these limitations, aninternational task force of 180 scientists was assembled to explore the concept of a low-toxicity "broad-spectrum" therapeutic approach that could simultaneously target many key pathways and mechanisms. Using cancer hallmark phenotypes and the tumor microenvironment to account for the various aspectsof relevant cancer biology, interdisciplinary teams reviewed each hallmark area and nominated a widerange of high-priority targets (74 in total) that could be modified to improve patient outcomes. For thesetargets, corresponding low-toxicity therapeutic approaches were then suggested, many of which werephytochemicals. Proposed actions on each target and all of the approaches were further reviewed forknown effects on other hallmark areas and the tumor microenvironment. Potential contrary or procar-cinogenic effects were found for 3.9% of the relationships between targets and hallmarks, and mixedevidence of complementary and contrary relationships was found for 7.1%. Approximately 67% of therelationships revealed potentially complementary effects, and the remainder had no known relationship. Among the approaches, 1.1% had contrary, 2.8% had mixed and 62.1% had complementary relationships. These results suggest that a broad-spectrum approach should be feasible from a safety standpoint. Thisnovel approach has potential to be relatively inexpensive, it should help us address stages and types ofcancer that lack conventional treatment, and it may reduce relapse risks. A proposed agenda for futureresearch is offered

    Volume I. Introduction to DUNE

    Get PDF
    The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay—these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the standard model. The DUNE far detector technical design report (TDR) describes the DUNE physics program and the technical designs of the single- and dual-phase DUNE liquid argon TPC far detector modules. This TDR is intended to justify the technical choices for the far detector that flow down from the high-level physics goals through requirements at all levels of the Project. Volume I contains an executive summary that introduces the DUNE science program, the far detector and the strategy for its modular designs, and the organization and management of the Project. The remainder of Volume I provides more detail on the science program that drives the choice of detector technologies and on the technologies themselves. It also introduces the designs for the DUNE near detector and the DUNE computing model, for which DUNE is planning design reports. Volume II of this TDR describes DUNE\u27s physics program in detail. Volume III describes the technical coordination required for the far detector design, construction, installation, and integration, and its organizational structure. Volume IV describes the single-phase far detector technology. A planned Volume V will describe the dual-phase technology

    Measurements of Higgs boson production cross sections and couplings in the diphoton decay channel at root s=13 TeV

    Get PDF
    Measurements of Higgs boson production cross sections and couplings in events where the Higgs boson decays into a pair of photons are reported. Events are selected from a sample of proton-proton collisions at root s = 13TeV collected by the CMS detector at the LHC from 2016 to 2018, corresponding to an integrated luminosity of 137 fb(-1). Analysis categories enriched in Higgs boson events produced via gluon fusion, vector boson fusion, vector boson associated production, and production associated with top quarks are constructed. The total Higgs boson signal strength, relative to the standard model (SM) prediction, is measured to be 1.12 +/- 0.09. Other properties of the Higgs boson are measured, including SM signal strength modifiers, production cross sections, and its couplings to other particles. These include the most precise measurements of gluon fusion and vector boson fusion Higgs boson production in several different kinematic regions, the first measurement of Higgs boson production in association with a top quark pair in five regions of the Higgs boson transverse momentum, and an upper limit on the rate of Higgs boson production in association with a single top quark. All results are found to be in agreement with the SM expectations.Peer reviewe
    • 

    corecore