222 research outputs found
Generalized Jacobi identities and ball-box theorem for horizontally regular vector fields
We consider a family of vector fields and we assume a horizontal regularity
on their derivatives. We discuss the notion of commutator showing that
different definitions agree. We apply our results to the proof of a ball-box
theorem and Poincar\'e inequality for nonsmooth H\"ormander vector fields.Comment: arXiv admin note: material from arXiv:1106.2410v1, now three separate
articles arXiv:1106.2410v2, arXiv:1201.5228, arXiv:1201.520
Revisiting the design intent concept in the context of mechanical CAD education
[EN] Design intent is generally understood simply as a CAD model¿s anticipated behavior when altered.
However, this representation provides a simplified view of the model¿s construction and purpose,
which may hinder its general understanding and future reusability. Our vision is that design intent
communication may be improved by recognizing the multifaceted nature of design intent, and by
instructing users to convey each facet of design intent through the better-fitted CAD resource. This
paper reviews the current understanding of design intent and its relationship to design rationale and
builds on the idea that communication of design intent conveyed via CAD models can be satisfied
at three levels provided that specialized instruction is used to instruct users in selection of the most
suitable level for each intent.Otey, J.; Company, P.; Contero, M.; Camba, J. (2018). Revisiting the design intent concept in the context of mechanical CAD education. Computer-Aided Design and Applications. 15(1):47-60. https://doi.org/10.1080/16864360.2017.1353733S476015
Accuracy and Stability of Computing High-Order Derivatives of Analytic Functions by Cauchy Integrals
High-order derivatives of analytic functions are expressible as Cauchy
integrals over circular contours, which can very effectively be approximated,
e.g., by trapezoidal sums. Whereas analytically each radius r up to the radius
of convergence is equal, numerical stability strongly depends on r. We give a
comprehensive study of this effect; in particular we show that there is a
unique radius that minimizes the loss of accuracy caused by round-off errors.
For large classes of functions, though not for all, this radius actually gives
about full accuracy; a remarkable fact that we explain by the theory of Hardy
spaces, by the Wiman-Valiron and Levin-Pfluger theory of entire functions, and
by the saddle-point method of asymptotic analysis. Many examples and
non-trivial applications are discussed in detail.Comment: Version 4 has some references and a discussion of other quadrature
rules added; 57 pages, 7 figures, 6 tables; to appear in Found. Comput. Mat
VERITAS: the Very Energetic Radiation Imaging Telescope Array System
The Very Energetic Radiation Imaging Telescope Array System (VERITAS)
represents an important step forward in the study of extreme astrophysical
processes in the universe. It combines the power of the atmospheric Cherenkov
imaging technique using a large optical reflector with the power of
stereoscopic observatories using arrays of separated telescopes looking at the
same shower. The seven identical telescopes in VERITAS, each of aperture 10 m,
will be deployed in a filled hexagonal pattern of side 80 m; each telescope
will have a camera consisting of 499 pixels with a field of view of 3.5 deg
VERITAS will substantially increase the catalog of very high energy (E >
100GeV) gamma-ray sources and greatly improve measurements of established
sources.Comment: 44 pages, 16 figure
Magnetic Field Generation in Stars
Enormous progress has been made on observing stellar magnetism in stars from
the main sequence through to compact objects. Recent data have thrown into
sharper relief the vexed question of the origin of stellar magnetic fields,
which remains one of the main unanswered questions in astrophysics. In this
chapter we review recent work in this area of research. In particular, we look
at the fossil field hypothesis which links magnetism in compact stars to
magnetism in main sequence and pre-main sequence stars and we consider why its
feasibility has now been questioned particularly in the context of highly
magnetic white dwarfs. We also review the fossil versus dynamo debate in the
context of neutron stars and the roles played by key physical processes such as
buoyancy, helicity, and superfluid turbulence,in the generation and stability
of neutron star fields.
Independent information on the internal magnetic field of neutron stars will
come from future gravitational wave detections. Thus we maybe at the dawn of a
new era of exciting discoveries in compact star magnetism driven by the opening
of a new, non-electromagnetic observational window.
We also review recent advances in the theory and computation of
magnetohydrodynamic turbulence as it applies to stellar magnetism and dynamo
theory. These advances offer insight into the action of stellar dynamos as well
as processes whichcontrol the diffusive magnetic flux transport in stars.Comment: 41 pages, 7 figures. Invited review chapter on on magnetic field
generation in stars to appear in Space Science Reviews, Springe
Functional mechanisms underlying pleiotropic risk alleles at the 19p13.1 breast-ovarian cancer susceptibility locus
A locus at 19p13 is associated with breast cancer (BC) and ovarian cancer (OC) risk. Here we analyse 438 SNPs in this region in 46,451 BC and 15,438 OC cases, 15,252 BRCA1 mutation carriers and 73,444 controls and identify 13 candidate causal SNPs associated with serous OC (P=9.2 × 10-20), ER-negative BC (P=1.1 × 10-13), BRCA1-associated BC (P=7.7 × 10-16) and triple negative BC (P-diff=2 × 10-5). Genotype-gene expression associations are identified for candidate target genes ANKLE1 (P=2 × 10-3) and ABHD8 (P<2 × 10-3). Chromosome conformation capture identifies interactions between four candidate SNPs and ABHD8, and luciferase assays indicate six risk alleles increased transactivation of the ADHD8 promoter. Targeted deletion of a region containing risk SNP rs56069439 in a putative enhancer induces ANKLE1 downregulation; and mRNA stability assays indicate functional effects for an ANKLE1 3′-UTR SNP. Altogether, these data suggest that multiple SNPs at 19p13 regulate ABHD8 and perhaps ANKLE1 expression, and indicate common mechanisms underlying breast and ovarian cancer risk
All-sky search for long-duration gravitational wave transients with initial LIGO
We present the results of a search for long-duration gravitational wave transients in two sets of data collected by the LIGO Hanford and LIGO Livingston detectors between November 5, 2005 and September 30, 2007, and July 7, 2009 and October 20, 2010, with a total observational time of 283.0 days and 132.9 days, respectively. The search targets gravitational wave transients of duration 10-500 s in a frequency band of 40-1000 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. All candidate triggers were consistent with the expected background; as a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. For signals from black hole accretion disk instabilities, we set upper limits on the source rate density between 3.4×10-5 and 9.4×10-4 Mpc-3 yr-1 at 90% confidence. These are the first results from an all-sky search for unmodeled long-duration transient gravitational waves. © 2016 American Physical Society
- …