310 research outputs found

    Charge characteristics in relation to free iron and organic matter of soils from Bambouto Mountains, Western Cameroon

    Get PDF
    We have examined the charge characteristics, with special emphasis on the role of free Fe and organic matter, of humid tropical soils from Bambouto Mountains, Western Cameroon. The soils, which are formed from tuff, basalt and trachyte, are dominated by kaolinite and sesquioxides. The mounts of Fe oxides in them increase somewhat with depth. Open 2:1 phyllosilicates are present in trace amounts. The point of zero charge of the variable charge components, pH0, is around 4 in the topsoil (0-20 cm) and around 6 at 100-150 cm depth. In the subsoils, pH0 exceeds soil pH presumably because of large quantities of Fe oxides. Deferration increases both soil pH and pH0, but diminishes the anion exchange capacity. Oxides and oxyhydrates of Fe have positive surface charge, so their removal from the soils would result in overall loss of positive charge. Increases in soil pH would bring about an increase in the cation exchange capacity of the soils. Hence, management practices that reduce soil acidity should reduce loss of essential basic cations via leaching

    SARS-CoV2 (COVID-19) infection: is fetal surgery in times of national disasters reasonable?

    Get PDF
    Even though the global COVID‐19 pandemic may affect how medical care is delivered in general, most countries try to maintain steady access for women to routine pregnancy care, including fetal anomaly screening. This means that, also during this pandemic, fetal anomalies will be detected, and that discussions regarding invasive genetic testing and possibly fetal therapy will need to take place. For patients, concerns about Severe Acute Respiratory Syndrome‐Corona Virus 2 will add to the anxiety caused by the diagnosis of a serious fetal anomaly. Yet, also for fetal medicine teams the situation gets more complex as they must weigh up the risks and benefits to the fetus as well as the mother, while managing a changing evidence base and logistic challenges in their healthcare system

    A standardized framework for accurate, high-throughput genotyping of recombinant and non-recombinant viral sequences

    Get PDF
    Human immunodeficiency virus type-1 (HIV-1), hepatitis B and C and other rapidly evolving viruses are characterized by extremely high levels of genetic diversity. To facilitate diagnosis and the development of prevention and treatment strategies that efficiently target the diversity of these viruses, and other pathogens such as human T-lymphotropic virus type-1 (HTLV-1), human herpes virus type-8 (HHV8) and human papillomavirus (HPV), we developed a rapid high-throughput-genotyping system. The method involves the alignment of a query sequence with a carefully selected set of pre-defined reference strains, followed by phylogenetic analysis of multiple overlapping segments of the alignment using a sliding window. Each segment of the query sequence is assigned the genotype and sub-genotype of the reference strain with the highest bootstrap (>70%) and bootscanning (>90%) scores. Results from all windows are combined and displayed graphically using color-coded genotypes. The new Virus-Genotyping Tools provide accurate classification of recombinant and non-recombinant viruses and are currently being assessed for their diagnostic utility. They have incorporated into several HIV drug resistance algorithms including the Stanford (http://hivdb.stanford.edu) and two European databases (http://www.umcutrecht.nl/subsite/spread-programme/ and http://www.hivrdb.org.uk/) and have been successfully used to genotype a large number of sequences in these and other databases. The tools are a PHP/JAVA web application and are freely accessible on a number of servers including

    Trends and predictors of transmitted drug resistance (TDR) and clusters with TDR in a local Belgian HIV-1 epidemic

    Get PDF
    We aimed to study epidemic trends and predictors for transmitted drug resistance (TDR) in our region, its clinical impact and its association with transmission clusters. We included 778 patients from the AIDS Reference Center in Leuven (Belgium) diagnosed from 1998 to 2012. Resistance testing was performed using population-based sequencing and TDR was estimated using the WHO-2009 surveillance list. Phylogenetic analysis was performed using maximum likelihood and Bayesian techniques. The cohort was predominantly Belgian (58.4%), men who have sex with men (MSM) (42.8%), and chronically infected (86.5%). The overall TDR prevalence was 9.6% (95% confidence interval (CI): 7.7-11.9), 6.5% (CI: 5.0-8.5) for nucleoside reverse transcriptase inhibitors (NRTI), 2.2% (CI: 1.4-3.5) for non-NRTI (NNRTI), and 2.2% (CI: 1.4-3.5) for protease inhibitors. A significant parabolic trend of NNRTI-TDR was found (p = 0.019). Factors significantly associated with TDR in univariate analysis were male gender, Belgian origin, MSM, recent infection, transmission clusters and subtype B, while multivariate and Bayesian network analysis singled out subtype B as the most predictive factor of TDR. Subtype B was related with transmission clusters with TDR that included 42.6% of the TDR patients. Thanks to resistance testing, 83% of the patients with TDR who started therapy had undetectable viral load whereas half of the patients would likely have received a suboptimal therapy without this test. In conclusion, TDR remained stable and a NNRTI up-and-down trend was observed. While the presence of clusters with TDR is worrying, we could not identify an independent, non-sequence based predictor for TDR or transmission clusters with TDR that could help with guidelines or public health measures
    corecore