797 research outputs found
The Global 21-cm Signal in the Context of the High-z Galaxy Luminosity Function
Motivated by recent progress in studies of the high- Universe, we build a
new model for the global 21-cm signal that is explicitly calibrated to
measurements of the galaxy luminosity function (LF) and further tuned to match
the Thomson scattering optical depth of the cosmic microwave background,
. Assuming that the galaxy population can be smoothly
extrapolated to higher redshifts, the recent decline in best-fit values of
and the inefficient heating induced by X-ray binaries (HMXBs; the
presumptive sources of the X-ray background at high-) imply that the
entirety of cosmic reionization and reheating occurs at redshifts . In contrast to past global 21-cm models, whose (
MHz) absorption features and strong mK emission features were driven
largely by the assumption of efficient early star-formation and X-ray heating,
our new fiducial model peaks in absorption at MHz at a depth of
mK and has a negligible emission component. As a result, a strong
emission signal would provide convincing evidence that HMXBs are not the only
drivers of cosmic reheating. Shallow absorption troughs should accompany strong
heating scenarios, but could also be caused by a low escape fraction of
Lyman-Werner photons. Generating signals with troughs at MHz
requires a floor in the star-formation efficiency in halos below , which is equivalent to steepening the faint-end of the galaxy LF.
These findings demonstrate that the global 21-cm signal is a powerful
complement to current and future galaxy surveys and efforts to better
understand the interstellar medium in high- galaxies.Comment: 17 pages, 9 figures, in pres
Fast Large Volume Simulations of the 21 cm Signal from the Reionization and pre-Reionization Epochs
While limited to low spatial resolution, the next generation low-frequency
radio interferometers that target 21 cm observations during the era of
reionization and prior will have instantaneous fields-of-view that are many
tens of square degrees on the sky. Predictions related to various statistical
measurements of the 21 cm brightness temperature must then be pursued with
numerical simulations of reionization with correspondingly large volume box
sizes, of order 1000 Mpc on one side. We pursue a semi-numerical scheme to
simulate the 21 cm signal during and prior to Reionization by extending a
hybrid approach where simulations are performed by first laying down the linear
dark matter density field, accounting for the non-linear evolution of the
density field based on second-order linear perturbation theory as specified by
the Zel'dovich approximation, and then specifying the location and mass of
collapsed dark matter halos using the excursion-set formalism. The location of
ionizing sources and the time evolving distribution of ionization field is also
specified using an excursion-set algorithm. We account for the brightness
temperature evolution through the coupling between spin and gas temperature due
to collisions, radiative coupling in the presence of Lyman-alpha photons and
heating of the intergalactic medium, such as due to a background of X-ray
photons. The hybrid simulation method we present is capable of producing the
required large volume simulations with adequate resolution in a reasonable time
so a large number of realizations can be obtained with variations in
assumptions related to astrophysics and background cosmology that govern the 21
cm signal.Comment: 14 pages and 15 figures. New version to match accepted version for
MNRAS. Code available in: http://www.SimFast21.or
Hubble Diagram of Gamma-Rays Bursts calibrated with Gurzadyan-Xue Cosmology
Gamma-ray bursts (GRBs) being the most luminous among known cosmic objects
carry an essential potential for cosmological studies if properly used as
standard candles. In this paper we test with GRBs the cosmological predictions
of the Gurzadyan-Xue (GX) model of dark energy, a novel theory that predicts,
without any free parameters, the current vacuum fluctuation energy density
close to the value inferred from the SNIa observations. We also compare the GX
results with those predicted by the concordance scenario -CDM.
According to the statistical approach by Schaefer (2007), the use of several
empirical relations obtained from GRBs observables, after a consistent
calibration for a specific model, enables one to probe current cosmological
models. Based on this recently introduced method, we use the 69 GRBs sample
collected by Schaefer (2007); and the most recently released SWIFT satellite
data (Sakamoto et al. 2007) together with the 41 GRBs sample collected by
Rizzuto et al. (2007), which has the more firmly determined redshifts. Both
data samples span a distance scale up to redshift about 7. We show that the GX
models are compatible with the Hubble diagram of the Schaefer (2007) 69 GRBs
sample. Such adjustment is almost identical to the one for the concordance
-CDM.Comment: 9 pages, 17 figures, 11 tables; Astr. & Astrophys. (in press
Lyman-alpha Damping Wing Constraints on Inhomogeneous Reionization
One well-known way to constrain the hydrogen neutral fraction, x_H, of the
high-redshift intergalactic medium (IGM) is through the shape of the red
damping wing of the Lya absorption line. We examine this method's effectiveness
in light of recent models showing that the IGM neutral fraction is highly
inhomogeneous on large scales during reionization. Using both analytic models
and "semi-numeric" simulations, we show that the "picket-fence" absorption
typical in reionization models introduces both scatter and a systematic bias to
the measurement of x_H. In particular, we show that simple fits to the damping
wing tend to overestimate the true neutral fraction in a partially ionized
universe, with a fractional error of ~ 30% near the middle of reionization.
This bias is generic to any inhomogeneous model. However, the bias is reduced
and can even underestimate x_H if the observational sample only probes a subset
of the entire halo population, such as quasars with large HII regions. We also
find that the damping wing absorption profile is generally steeper than one
would naively expect in a homogeneously ionized universe. The profile steepens
and the sightline-to-sightline scatter increases as reionization progresses. Of
course, the bias and scatter also depend on x_H and so can, at least in
principle, be used to constrain it. Damping wing constraints must therefore be
interpreted by comparison to theoretical models of inhomogeneous reionization.Comment: 11 pages, 10 figures; submitted to MNRA
Ultraviolet Line Emission from Metals in the Low-Redshift Intergalactic Medium
We use a high-resolution cosmological simulation that includes hydrodynamics,
multiphase star formation, and galactic winds to predict the distribution of
metal line emission at z~0 from the intergalactic medium (IGM). We focus on two
ultraviolet doublet transitions, OVI 1032,1038 and CIV 1548,1551. Emission from
filaments with moderate overdensities is orders of magnitude smaller than the
background, but isolated emission from enriched, dense regions with
T~10^5-10^5.5 K and characteristic sizes of 50-100 kpc can be detected above
the background. We show that the emission from these regions is substantially
greater when we use the metallicities predicted by the simulation (which
includes enrichment through galactic winds) than when we assume a uniform IGM
metallicity. Luminous regions correspond to volumes that have recently been
influenced by galactic winds. We also show that the line emission is clustered
on scales ~1 h^-1 Mpc. We argue that although these transitions are not
effective tracers of the warm-hot intergalactic medium, they do provide a route
to study the chemical enrichment of the IGM and the physics of galactic winds.Comment: replaced by version to appear in ApJ (conclusions unchanged, one new
figure), 16 pages (emulateapj), 11 figures, version with higher resolution
figures available at
http://www.tapir.caltech.edu/~sfurlane/metals/coverpage.htm
The Effects of Dark Matter Decay and Annihilation on the High-Redshift 21 cm Background
The radiation background produced by the 21 cm spin-flip transition of
neutral hydrogen at high redshifts can be a pristine probe of fundamental
physics and cosmology. At z~30-300, the intergalactic medium (IGM) is visible
in 21 cm absorption against the cosmic microwave background (CMB), with a
strength that depends on the thermal (and ionization) history of the IGM. Here
we examine the constraints this background can place on dark matter decay and
annihilation, which could heat and ionize the IGM through the production of
high-energy particles. Using a simple model for dark matter decay, we show
that, if the decay energy is immediately injected into the IGM, the 21 cm
background can detect energy injection rates >10^{-24} eV cm^{-3} sec^{-1}. If
all the dark matter is subject to decay, this allows us to constrain dark
matter lifetimes <10^{27} sec. Such energy injection rates are much smaller
than those typically probed by the CMB power spectra. The expected brightness
temperature fluctuations at z~50 are a fraction of a mK and can vary from the
standard calculation by up to an order of magnitude, although the difference
can be significantly smaller if some of the decay products free stream to lower
redshifts. For self-annihilating dark matter, the fluctuation amplitude can
differ by a factor <2 from the standard calculation at z~50. Note also that, in
contrast to the CMB, the 21 cm probe is sensitive to both the ionization
fraction and the IGM temperature, in principle allowing better constraints on
the decay process and heating history. We also show that strong IGM heating and
ionization can lead to an enhanced H_2 abundance, which may affect the earliest
generations of stars and galaxies.Comment: submitted to Phys Rev D, 14 pages, 8 figure
Modificação de atributos do solo pela calagem incorporada em um solo argiloso cultivado com macieira.
bitstream/CNPUV/8810/1/cot068.pd
Is Double Reionization Physically Plausible?
Recent observations of z~6 quasars and the cosmic microwave background imply
a complex history to cosmic reionization. Such a history requires some form of
feedback to extend reionization over a long time interval, but the nature of
the feedback and how rapidly it operates remain highly uncertain. Here we focus
on one aspect of this complexity: which physical processes can cause the global
ionized fraction to evolve non-monotonically with cosmic time? We consider a
range of mechanisms and conclude that double reionization is much less likely
than a long, but still monotonic, ionization history. We first examine how
galactic winds affect the transition from metal-free to normal star formation.
Because the transition is actually spatially inhomogeneous and temporally
extended, this mechanism cannot be responsible for double reionization given
plausible parameters for the winds. We next consider photoheating, which causes
the cosmological Jeans mass to increase in ionized regions and hence suppresses
galaxy formation there. In this case, double reionization requires that small
halos form stars efficiently, that the suppression from photoheating is strong
relative to current expectations, and that ionizing photons are preferentially
produced outside of previously ionized regions. Finally, we consider H_2
photodissociation, in which the buildup of a soft ultraviolet background
suppresses star formation in small halos. This can in principle cause the
ionized fraction to temporarily decrease, but only during the earliest stages
of reionization. Finally, we briefly consider the effects of some of these
feedback mechanisms on the topology of reionization.Comment: 13 pages, 5 figures, in press at ApJ (reorganized significantly but
major conclusions unchanged
Reionization and the large-scale 21 cm-cosmic microwave background cross correlation
Of the many probes of reionization, the 21 cm line and the cosmic microwave
background (CMB) are among the most effective. We examine how the
cross-correlation of the 21 cm brightness and the CMB Doppler fluctuations on
large angular scales can be used to study this epoch. We employ a new model of
the growth of large scale fluctuations of the ionized fraction as reionization
proceeds. We take into account the peculiar velocity field of baryons and show
that its effect on the cross correlation can be interpreted as a mixing of
Fourier modes. We find that the cross-correlation signal is strongly peaked
toward the end of reionization and that the sign of the correlation should be
positive because of the inhomogeneity inherent to reionization. The signal
peaks at degree scales (l~100) and comes almost entirely from large physical
scales (k~0.01 Mpc). Since many of the foregrounds and noise that plague low
frequency radio observations will not correlate with CMB measurements, the
cross correlation might appear to provide a robust diagnostic of the
cosmological origin of the 21 cm radiation around the epoch of reionization.
Unfortunately, we show that these signals are actually only weakly correlated
and that cosmic variance dominates the error budget of any attempted detection.
We conclude that the detection of a cross-correlation peak at degree-size
angular scales is unlikely even with ideal experiments.Comment: 15 pages, 4 figures, submitted to MNRA
Resposta do pessegueiro à adubação nitrogenada em um Cambissolo Húmico na Serra Gaúcha.
bitstream/CNPUV-2009-09/8805/1/cot072.pd
- …