We use a high-resolution cosmological simulation that includes hydrodynamics,
multiphase star formation, and galactic winds to predict the distribution of
metal line emission at z~0 from the intergalactic medium (IGM). We focus on two
ultraviolet doublet transitions, OVI 1032,1038 and CIV 1548,1551. Emission from
filaments with moderate overdensities is orders of magnitude smaller than the
background, but isolated emission from enriched, dense regions with
T~10^5-10^5.5 K and characteristic sizes of 50-100 kpc can be detected above
the background. We show that the emission from these regions is substantially
greater when we use the metallicities predicted by the simulation (which
includes enrichment through galactic winds) than when we assume a uniform IGM
metallicity. Luminous regions correspond to volumes that have recently been
influenced by galactic winds. We also show that the line emission is clustered
on scales ~1 h^-1 Mpc. We argue that although these transitions are not
effective tracers of the warm-hot intergalactic medium, they do provide a route
to study the chemical enrichment of the IGM and the physics of galactic winds.Comment: replaced by version to appear in ApJ (conclusions unchanged, one new
figure), 16 pages (emulateapj), 11 figures, version with higher resolution
figures available at
http://www.tapir.caltech.edu/~sfurlane/metals/coverpage.htm