217 research outputs found
Parametric Study of Heat Deposition from Collision Debris into the Insertion Superconducting Magnets for the LHC Luminosity Upgrade
With a new geometry in a higher luminosity environment, the power deposition in the superconducting magnets becomes a critical aspect to analyze and to integrate in the insertion design. In this paper, we quantify the power deposited in magnets insertion at variable positions from the interaction point (IP). A fine characterization of the debris due to the proton-proton collisions at 7 TeV, shows that the energetic particles in the very forward direction give rise to non intuitive dependences of the impacting energy on the magnet front face and inner surface. The power deposition does not vary significantly with the distance to the interaction point, because of counterbalancing effects of different contributions to power deposition. We have found out that peak power density in the magnet insertion does not vary significantly with or without the Target Absorber Secondaries (TAS) protection
LHC Superconducting Dipole Production Follow-up: Results of Audit on QA Aspects in Industry
The manufacturing of the 1232 Superconducting Main Dipoles for LHC is under way at three European Contractors: Alstom-Jeumont (Consortium), Ansaldo Superconduttori Genova and Babcock Noell Nuclear. The manufacturing is proceeding in a very satisfactory way and in March 2005 the mid production was achieved. To intercept eventually âワweak pointsâ of the production process still present and in order to make a check of the Quality Assurance and Control in place for the series production, an Audit action was launched by CERN during summer-fall 2004. Aspects like: completion of Production and Quality Assurance documentation, structure of QC Teams, traceability, calibration and maintenance for tooling, incoming components inspections, were checked during a total of seven visits at the five different production sites. The results of the Audit in terms of analysis of âワsystematicâ and âワrandomâ problems encountered as well as corrective actions requested are presented
Acceleration of lead ions in the CERN PS booster and the CERN PS
The new CERN Heavy Ion Accelerating Facility also requires besides a new Linac substantial modifications of existing accelerators. They are imposed by the low speed and the low intensity of the ion beam and, crucially at low energy, by the short lifetime of the partially stripped ions due to charge exchange with the atoms of the residual gas. The upgraded vacuum system hits the limits of a non-bakeable machine and consequently the acceleration had to be sped up by all means. In the Booster this led to injection and RF capture on a fast-rising magnet cycle and a new digital RF beam control system. Beam current transformers had to be replaced by new, heavily shielded ones. Other modifications include a new staircase magnet to distribute ions over the four Booster rings, lengthening of septa and kicker pulses, plus new, bakeable extraction septa and an energy stabilizing RF loop on the flat top in the CPS, and a stripper in the transfer line to the SPS
Quality Control Techniques Applied to the Large Scale Production of Superconducting Dipole Magnets for LHC
The LHC accelerator, under construction at CERN, is characterized by the use on a large scale of high field superconducting dipoles: the 27-km ring requires 1232 15-m long dipole magnets designed for a peak field of 9 T. The coils are wound with Rutherford-type cable based on copper-stabilized Nb-Ti superconductors and will be operated at 1.9 K in pressurized superfluid helium. The challenge that had to be faced has been an efficient, cost-effective and reproducible mass production to very tight tolerances: the field quality must be better than 10-4 and the geometry of the cold bore tube and magnet controlled to 0.1 mm over the whole length, any deviation being liable to induce delays and significant cost increase. This paper presents the main methods and tools chosen to face successfully this challenge: some methods were foreseen in the technical specification, others were implemented based on the experience gained in several years of fabrication
A Very Intense Neutrino Super Beam Experiment for Leptonic CP Violation Discovery based on the European Spallation Source Linac: A Snowmass 2013 White Paper
Very intense neutrino beams and large neutrino detectors will be needed in
order to enable the discovery of CP violation in the leptonic sector. We
propose to use the proton linac of the European Spallation Source currently
under construction in Lund, Sweden to deliver, in parallel with the spallation
neutron production, a very intense, cost effective and high performance
neutrino beam. The baseline program for the European Spallation Source linac is
that it will be fully operational at 5 MW average power by 2022, producing 2
GeV 2.86 ms long proton pulses at a rate of 14 Hz. Our proposal is to upgrade
the linac to 10 MW average power and 28 Hz, producing 14 pulses/s for neutron
production and 14 pulses/s for neutrino production. Furthermore, because of the
high current required in the pulsed neutrino horn, the length of the pulses
used for neutrino production needs to be compressed to a few s with the
aid of an accumulator ring. A long baseline experiment using this Super Beam
and a megaton underground Water Cherenkov detector located in existing mines
300-600 km from Lund will make it possible to discover leptonic CP violation at
5 significance level in up to 50% of the leptonic Dirac CP-violating
phase range. This experiment could also determine the neutrino mass hierarchy
at a significance level of more than 3 if this issue will not already
have been settled by other experiments by then. The mass hierarchy performance
could be increased by combining the neutrino beam results with those obtained
from atmospheric neutrinos detected by the same large volume detector. This
detector will also be used to measure the proton lifetime, detect cosmological
neutrinos and neutrinos from supernova explosions. Results on the sensitivity
to leptonic CP violation and the neutrino mass hierarchy are presented.Comment: 28 page
2023 EULAR recommendations on imaging in diagnosis and management of crystal-induced arthropathies in clinical practice.
To formulate evidence-based recommendations and overarching principles on the use of imaging in the clinical management of crystal-induced arthropathies (CiAs).
An international task force of 25 rheumatologists, radiologists, methodologists, healthcare professionals and patient research partners from 11 countries was formed according to the EULAR standard operating procedures. Fourteen key questions on the role of imaging in the most common forms of CiA were generated. The CiA assessed included gout, calcium pyrophosphate deposition disease and basic calcium phosphate deposition disease. Imaging modalities included conventional radiography, ultrasound, CT and MRI. Experts applied research evidence obtained from four systematic literature reviews using MEDLINE, EMBASE and CENTRAL. Task force members provided level of agreement (LoA) anonymously by using a Numerical Rating Scale from 0 to 10.
Five overarching principles and 10 recommendations were developed encompassing the role of imaging in various aspects of patient management: making a diagnosis of CiA, monitoring inflammation and damage, predicting outcome, response to treatment, guided interventions and patient education. Overall, the LoA for the recommendations was high (8.46-9.92).
These are the first recommendations that encompass the major forms of CiA and guide the use of common imaging modalities in this disease group in clinical practice
Long Term Stability of the LHC Superconducting Cryodipoles after Outdoor Storage
The main superconducting dipoles for the LHC are being stored outdoors for periods from a few weeks to several years after conditioning with dry nitrogen gas. Such a storage before installation in the 27 km circumference tunnel may affect not only the mechanical and cryogenic functionality of the cryodipoles but also their quench and field performance. A dedicated task force was established to study all aspects of long term behaviour of the stored cryodipoles, with particular emphasis on electrical and vacuum integrity, quench training behaviour, magnetic field quality, performance of the thermal insulation, mechanical stability of magnet shape and of the interface between cold mass and cryostat, degradation ofmaterials and welds. In particular, one specifically selected cryodipole stored outdoors for more than one year, was retested at cold. In addition, various tests have been carried out on the cryodipole assembly and on the most critical subcomponents to study aspects such as the hygrothermal behaviour of the supporting system and the possible oxidation of the Multi Layer Insulation reflective films. This paper summarizes the main investigations carried out and their results
High intensity neutrino oscillation facilities in Europe
The EUROnu project has studied three possible options for future, high intensity neutrino oscillation facilities in Europe. The first is a Super Beam, in which the neutrinos come from the decay of pions created by bombarding targets with a 4 MW proton beam from the CERN High Power Superconducting Proton Linac. The far detector for this facility is the 500 kt MEMPHYS water Cherenkov, located in the Fréjus tunnel. The second facility is the Neutrino Factory, in which the neutrinos come from the decay of μ+ and μ− beams in a storage ring. The far detector in this case is a 100 kt magnetized iron neutrino detector at a baseline of 2000 km. The third option is a Beta Beam, in which the neutrinos come from the decay of beta emitting isotopes, in particular He6 and Ne18, also stored in a ring. The far detector is also the MEMPHYS detector in the Fréjus tunnel. EUROnu has undertaken conceptual designs of these facilities and studied the performance of the detectors. Based on this, it has determined the physics reach of each facility, in particular for the measurement of CP violation in the lepton sector, and estimated the cost of construction. These have demonstrated that the best facility to build is the Neutrino Factory. However, if a powerful proton driver is constructed for another purpose or if the MEMPHYS detector is built for astroparticle physics, the Super Beam also becomes very attractive
- …