128 research outputs found

    Electromagnetic counterparts of compact object mergers powered by the radioactive decay of r-process nuclei

    Get PDF
    The most promising astrophysical sources of kHz gravitational waves (GWs) are the inspiral and merger of binary neutron star(NS)/black hole systems. Maximizing the scientific return of a GW detection will require identifying a coincident electromagnetic (EM) counterpart. One of the most likely sources of isotropic EM emission from compact object mergers is a supernova-like transient powered by the radioactive decay of heavy elements synthesized in ejecta from the merger. We present the first calculations of the optical transients from compact object mergers that self-consistently determine the radioactive heating by means of a nuclear reaction network; using this heating rate, we model the light curve with a one-dimensional Monte Carlo radiation transfer calculation. For an ejecta mass ∼10−2 M⊙ (10−3 M⊙) the resulting light-curve peaks on a time-scale ∼1 d at a V-band luminosity νLν∼ 3 × 1041 (1041) erg s−1[MV=−15(−14)]; this corresponds to an effective ‘f' parameter ∼3 × 10−6 in the Li-Paczynski toy model. We argue that these results are relatively insensitive to uncertainties in the relevant nuclear physics and to the precise early-time dynamics and ejecta composition. Since NS merger transients peak at a luminosity that is a factor of ∼103 higher than a typical nova, we propose naming these events ‘kilo-novae'. Because of the rapid evolution and low luminosity of NS merger transients, EM counterpart searches triggered by GW detections will require close collaboration between the GW and astronomical communities. NS merger transients may also be detectable following a short-duration gamma-ray burst or ‘blindly' with present or upcoming optical transient surveys. Because the emission produced by NS merger ejecta is powered by the formation of rare r-process elements, current optical transient surveys can directly constrain the unknown origin of the heaviest elements in the Univers

    Degradation and healing in a generalized neo-Hookean solid due to infusion of a fluid

    Full text link
    The mechanical response and load bearing capacity of high performance polymer composites changes due to diffusion of a fluid, temperature, oxidation or the extent of the deformation. Hence, there is a need to study the response of bodies under such degradation mechanisms. In this paper, we study the effect of degradation and healing due to the diffusion of a fluid on the response of a solid which prior to the diffusion can be described by the generalized neo-Hookean model. We show that a generalized neo-Hookean solid - which behaves like an elastic body (i.e., it does not produce entropy) within a purely mechanical context - creeps and stress relaxes when infused with a fluid and behaves like a body whose material properties are time dependent. We specifically investigate the torsion of a generalized neo-Hookean circular cylindrical annulus infused with a fluid. The equations of equilibrium for a generalized neo-Hookean solid are solved together with the convection-diffusion equation for the fluid concentration. Different boundary conditions for the fluid concentration are also considered. We also solve the problem for the case when the diffusivity of the fluid depends on the deformation of the generalized neo-Hookean solid.Comment: 24 pages, 10 figures, submitted to Mechanics of Time-dependent Material

    Electromagnetic Counterparts of Compact Object Mergers Powered by the Radioactive Decay of R-process Nuclei

    Full text link
    The most promising astrophysical sources of kHz gravitational waves (GWs) are the inspiral and merger of binary neutron star(NS)/black hole systems. Maximizing the scientific return of a GW detection will require identifying a coincident electro-magnetic (EM) counterpart. One of the most likely sources of isotropic EM emission from compact object mergers is a supernova-like transient powered by the radioactive decay of heavy elements synthesized in ejecta from the merger. We present the first calculations of the optical transients from compact object mergers that self-consistently determine the radioactive heating by means of a nuclear reaction network; using this heating rate, we model the light curve with a one dimensional Monte Carlo radiation transfer calculation. For an ejecta mass ~1e-2 M_sun[1e-3 M_sun] the resulting light curve peaks on a timescale ~ 1 day at a V-band luminosity nu L_nu ~ 3e41[1e41] ergs/s (M_V = -15[-14]); this corresponds to an effective "f" parameter ~3e-6 in the Li-Paczynski toy model. We argue that these results are relatively insensitive to uncertainties in the relevant nuclear physics and to the precise early-time dynamics and ejecta composition. Due to the rapid evolution and low luminosity of NS merger transients, EM counterpart searches triggered by GW detections will require close collaboration between the GW and astronomical communities. NS merger transients may also be detectable following a short-duration Gamma-Ray Burst or "blindly" with present or upcoming optical transient surveys. Because the emission produced by NS merger ejecta is powered by the formation of rare r-process elements, current optical transient surveys can directly constrain the unknown origin of the heaviest elements in the Universe.Comment: 14 pages, 7 figures; accepted to MNRAS; title changed to highlight r-process connection and new figure added

    Colloid/nanoparticle formation and mobility in the context of deep geological nuclear waste disposal (Project KOLLORADO-2) ; final report (KIT Scientific Reports ; 7645)

    Get PDF
    To assess the relevance of colloidal influences on radionuclide transport for the long-term safety of a radioactive waste repository, the KOLLORADO-2 project integrates the results of geochemical and hydrogeological studies. The results may serve as a basis for an appraisal of the implications of colloid presence in the vicinity of radioactive waste repositories in different deep geological host-rock formations

    Feedback control algorithms for the dissipation of traffic waves with autonomous vehicles

    Get PDF
    International audienceThis article considers the problem of traffic control in which an autonomous vehicle is used to regulate human piloted traffic to dissipate stop and go traffic waves. We first investigate the controllability of well-known microscopic traffic flow models, namely i) the Bando model (also known as the optimal velocity model), ii) the follow-the-leader model, and iii) a combined optimal velocity follow the leader model. Based on the controllability results, we propose three control strategies for an autonomous vehicle to stabilize the other, human-piloted traffic. We subsequently simulate the control effects on the microscopic models of human drivers in numerical experiments to quantify the potential benefits of the controllers. Based on the simulations, finally we conduct a field experiment with 22 human drivers and a fully autonomous-capable vehicle, to assess the feasibility of autonomous vehicle based traffic control on real human piloted traffic. We show that both in simulation and in the field test that an autonomous vehicle is able to dampen waves generated by 22 cars, and that as a consequence, the total fuel consumption of all vehicles is reduced by up to 20%
    • …
    corecore