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Feedback control algorithms for the dissipation of traffic waves with
autonomous vehicles

M. L. Delle Monache*, T. Liardf, A. Rat ¥, R. Stern?,
R. Badhani¥ B.Seibold!l, J. Sprinkle*s D. Work'! B. Piccolit*

Abstract

This article considers the problem of traffic control in which an autonomous vehicle is used to regulate
human piloted traffic to dissipate stop and go traffic waves. We first investigate the controllability of
well-known microscopic traffic flow models, namely :) the Bando model (also known as the optimal
velocity model), i) the follow-the-leader model, and i) a combined optimal velocity follow the leader
model. Based on the controllability results, we propose three control strategies for an autonomous
vehicle to stabilize the other, human-piloted traffic. We subsequently simulate the control effects on
the microscopic models of human drivers in numerical experiments to quantify the potential benefits of
the controllers. Based on the simulations, finally we conduct a field experiment with 22 human drivers
and a fully autonomous-capable vehicle, to assess the feasibility of autonomous vehicle based traffic
control on real human piloted traffic. We show that both in simulation and in the field test that an
autonomous vehicle is able to dampen waves generated by 22 cars, and that as a consequence, the total
fuel consumption of all vehicles is reduced by up to 20%.

1 Introduction

Currently, the vehicular transportation system is undergoing a major transition from vehicles in which
humans are responsible for all driving tasks, to one in which automation is responsible for all driving
tasks. The transition is defined [19] in terms of various levels of automation. The levels range from
level one autonomous vehicles (AVs) available today that provide the driver with minor technological
assistance (e.g., stability control or lane correction assist), to level five AVs which operate autonomously
in all scenarios and in which humans cannot intervene. As the penetration rate of vehicles at each level
of automation increases and shifts up the scale, new opportunities are arising to use automated vehicles
to begin controlling the overall traffic flow.

A paradigm of traffic control in which some automated vehicles are also acting as traffic control
devices is beginning to emerge. In particular, the works [10, 57, 16, 58, 26], explore the possibility
of adaptive cruise controlled vehicles (e.g., level one automation) to influence traffic flow, for example
by smoothing the flow and/or increasing the flow rate. On the extreme end, when the adaptive cruise
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controlled vehicles are also endowed with communication capabilities between vehicles (referred to as
Cooperative Adaptive Cruise Control (CACC) systems), small headways can be achieved and substantial
increases in freeway throughput can be obtained [29, 54, 50, 12, 9, 3, 23, 5, 44]. On the experimental
side, field experiments with commercial adaptive cruise control vehicles illustrate current technology
may in fact amplify traffic oscillations [33], while correctly designed CACC systems dissipate these
oscillations [33, 14]. An experiment to harmonize speeds on a US freeway was recently reported [32, 31].

The use of vehicles as traffic controllers may also integrate with more classical traffic control infras-
tructure, such as ramp meters and variable speed limit systems [35, 19, 51, 20, 43, 38, 15, 37], or systems
which combine the two strategies [18, 39, 30, 17]. One limitation of the infrastructure based solutions is
their limited spatial resolution, as well as the need for driver compliance in the case of speed advisory
based systems. The interest to use automated vehicles for traffic control is partly motivated by these
limitations.

Considering the new direction of traffic control in which automated vehicles act as actuators, the
main contribution of this article is to propose and assess control algorithms designed to dissipate stop
and go traffic waves with an autonomous vehicle. Stop and go traffic waves are present on freeways and
have many triggering events, such as lane changes. Strikingly, in the seminal experiments of Sugiyama
et al. [52] and Tadaki et al. [55], human driving behavior alone was shown to be sufficient to trigger stop
and go waves. The experiments were conducted on a single lane circular track with real human drivers,
and the uniform flow at the experiment start quickly breaks down into a persistent stop and go wave
that travels against the flow of traffic.

Motivated by this experiment, we design control algorithms to be implemented on an autonomous
vehicle with the goal of dissipating stop and go waves caused by human driving behavior. We proceed
as follows. First we model the vehicular traffic at the microscopic scale using one or a combination of
two well-known microscopic models, namely i) the Bando or optimal velocity (OV) model [1] and the
i) follow the leader (FTL) [48, 47, 42]. With the models defined, we show that traffic described by a
linerization of the FTL model is not controllable via a single AV, implying the nonlinear FTL model is
not linearly controllable. This result prevents the use of simple linear controllers to stabilize the traffic
around the uniform speed equilibrium traffic state. On the other hand, we show that traffic described by
the optimal velocity model is locally controllable by an autonomous vehicle. We show that for driving
dynamics that include both the optimal velocity and follow the leader terms, the resulting model is also
locally controllable’

We then proceed to design three different controls in which the AV is used to dampen stop and go
waves. The first two are based on Lyapunov functions and only require measurements of the AV speed
and the speed of nearby vehicles, while the third is a PID-type control in which the AV is controlled
using only measurements of its own speed over several proceeding timesteps.

We first assess the effectiveness of the wave dampening controllers though numerical experiments.
In addition to showing a reduction in the wave strength, we also quantify the benefits in terms of a
reduction of total fuel consumed by all vehicles in the simulation. Based on the positive performance in
simulation, we proceed to field validate one control algorithm with a dive-by-wire autonomous capable
vehicle on a track with 22 vehicles driven by humans. The experiment shows that stop and go waves
can be dampened, and the projected reduction of fuel consumption from the simulations (approximately
20%) is confirmed via real-time fuel consumption loggers installed on the experimental vehicles.

The remainder of the article is organized as follows. In Section 2, we review the main microscopic
traffic flow models investigated in this work. Section 3 establishes the main controllability results of the
models, while Section 4 describes the design and testing the wave dissipating controllers in simulation.
In Section 5 we test one of the wave dampening controllers in a field experiment with real human drivers
and an autonomous vehicle. Limitations and future directions are explored in Section 6.

2 Microscopic traffic models

Traffic models are usually defined in categories, depending on the scale at which they represent vehicular
traffic, including microscopic, mesoscopic, macroscopic and cellular. For a review of models at various
scales see [21, 2, 13, 41]. Moreover, some approaches are based on model-agnostic simulation tools, such
as deep learning and neural networks [22, 7, 25, 60].

1Established for n <= 9 vehicles and conjectured for n > 9.



In this paper we focus on microscopic models. Microscopic models are suitable for in-silico verification
before experimental testing since they describe human driving behavior at the individual vehicle level.
One such model is the combined Bando and follow the leader model, which can be formulated as #; = v;,
Uy = f(Zit1, Ti, Vi+1, v;), where x; is the position of i-th car, v; its velocity, and 7 + 1 is the index of the
car ahead.

More precisely, for what concerns the follow the leader model, it was introduced in [48, 47, 42] and
it assumes that the acceleration of a vehicle is given by the neighbouring vehicles. The main influence
comes from the next vehicle, whose index is 7 + 1, that is also called leading vehicle. The main dynamics
described by this model is given by:

in = Vs

. Vi+1 — Vi . 1

Ui :M. 1<i<N ()
Tit1 — T;

This model has the following properties:
e The acceleration depends on the relative velocity Av = vi41 — v;

e The velocity v;(t) of the vehicle depends on the velocity of the vehicle in front such that the distance
from the vehicle in front is safe.

A drawback of these models is that the acceleration is zero when the relative velocity is zero independently
of the headway d = x;+1 — x; That is, extremely small headways are allowed even when travelling with
extremely high speed, [36]. A model that fixed this problem is the optimal velocity model (introduced
by [1]) that describes the adaptation of the actual speed to the optimal velocity V() which stands for
the desired speed defined by

tanh(z — I, — ds) + tanh(l, + ds)
1 + tanh(l, + ds) ’

V(-T) = Umax (2)
where [, is the length of cars and ds > 0 is the safe distance between cars. The optimal velocity has the

property that it tends to zero for small headways and it achieves the maximum value for large headways.
The full model reads:

{Ifi = V; 3

{’U'i —V(l‘i+1—l'i)—’vi. 1<’I,<N ()

In this model, a driver controls acceleration or deceleration according to the difference between the

optimal velocity and his own velocity. The equilibrium point for this model is achieved when all cars at

constant speed and with the same headway, [27]. For this model it is possible to derive a feedback law
such that the controlled traffic system is stable, [34].

3 Controllability results for microscopic models

In this Section, we provide theoretical results about controllability for the microscopic models introduced
in Section 2. More precisely, we will focus on a ring-road setting, which reproduce the situation of the
celebrated Sugiyama experiment [53] with a single AV, which can be controlled, and investigate the
controllability of the corresponding control system.

Let us first recall some basic facts about control systems, referring the reader to the books [1] and [8]
for details. A control systems is a dynamical system written as:

Y= f(y,u) (4)

where y € R"™ represents the state of the system and u € U C R™ represents the control vector, i.e.
the parameters which can be chosen by an external agent. In our setting y represent the state of the
traffic model (e.g. position and velocity of cars) and u the acceleration or speed of the AV which can be
controlled.

A system (4) is said controllable if for every states yi, y2, there exists T > 0 and a control function
@ : [0,T] — U such that the solution to the Chauchy problem y = f(¢ a(t)), y(0) = yi satisfies
y(T) = y2. In other words we can steer the system from y;1 to y2 in time 7' > 0 with a suitable control .
Similarly a system is said locally controllable at g if for every § > 0 sufficiently small there exists T > 0
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Figure 1: Sketch of n vehicles on a trajectory along a ring of length L.

such that we can steer the system from § to any y with |y — §| < § in time 7. In other words we can
reach sufficienly close states in uniformly bounded time.

An important tool to investigate controllability (and local ones) is linearization. Given a control
system (4), such that U contains a neighborhood of 0, and §, we can consider the linearized system at
y:

i2=A-z4+B-u, (5)
where A = D, f(7,0) (the Jacobian matrix of f w.r.t. y computed at (,0)) and B = D, f(7,0) (the
Jacobian matrix of f w.r.t. u computed at (7,0)). For linear systems, there is a simple criterion for
controllability. First, given the linear control system (5), define the Kalman controllability matrix:

K(A,B)=[B,A-B,...,A"".B]. (6)

Since A is an n X n matrix and B is a n X m matrix, then K (A, B) is an n X n - m matrix. We can now
state the follwing (see [4, Theorem 3.6.2]):

Theorem 1. (Kalman controllability theorem) The system (5) is controllable if and only if the
matriz K(A, B) has full rank (i.e. equal to n).

The fact that we can limit ourselves to the exponent n — 1 in the definition of K (A, B) follows from
Cayley-Hamilton Theorem, which ensures that A is root of its characteristic polynomial, i.e. there exists
o; such that A" = Z; i=0""1a, A%

The local controllability of a system can be investigated by looking at its linearization. More precisely
we have the following (see [4, Theorem 3.7.1]):

Theorem 2. Consider a control system (4) and its linearization (5) at a given state y. If (5) is
controllable then (4) is locally controllable at j.

The converse of this Theorem is not true: a nonlinear control system may be controllable even if
its linearization fails to be controllable. However, the controllability of the linearization ensures the
existence of linear stabilizing feedbacks, i.e. control laws of the type u(y) = K -y that renders the system
(4) locally asymptotically stable at g, see [1, Theorem 4.2.3].

We are now ready to define our control system for traffic control on a ring-road via one AV, see Figure
1. Let (a,b) € R®\{(0,0)} and consider the control system of n vehicles along a ring-road of length L



described by the FTL-Bando model:

i‘i:’l}h 1<’L<TL,

. Vil — Vs .

0 =0 —————= + bV (zit1 —x:) — i, 1<i<n—1, (7)
(Tig1r — @)

Up = U,

where x; is the position of the i*" vehicle, v; its velocity and V() stands for the desired speed which is
defined in 2. Notice that we can control only the acceleration u of the n-th vehicle, which represents the
AV.

Remark 1. If b = 0, the nonlinear control system (7) is the Follow-The-Leader model (FTL). If a = 0,
the system (7) is the optimal velocity model.

Our aim is to steer the system, (7) to a speed equilibrium state, i.e. a state so that all vehicles have
the same velocity v. If b # 0, i.e. if there is a non vanishing optimal velocity term, a speed equilibrium
corresponds to all vehicles which are not controlled (i.e., all vehicles but the n-th ones) having the same
headway distance d, while the AV may have a different headway. Moreover, to be in speed equilibrium
we must have V(d) = ¥, thus d is fixed once v is fixed. On the other side if b = 0 then all states with
same speed are an equilibrium with any set of headways. We summarize this analysis in the following
Lemma:

Lemma 1. Consider the control system (7) and a fized speed .
If b # 0 then the following holds. Let d be such that V(d) =v. If d < % then the only speed equilibrium
is given by x(t) such that x;11(t) —zi(t) =d,i=1,....,n—1 and &;(t) = v, i = 1,...,n. Otherwise
there exists no speed equilibrium.
If b =0 then every z(t) such that z;(t) =0, i=1,...,n, is an equilibrium.

b

Now fix (d,7) € R}, with V(d) = v if b # 0, then we rewrite (7) as

Y = f(Y,u). (8)
where Y = (yi)i=1,... 2n—1 = (2 — 21 — d, ..., Tn — Tn—1 — d, V2 — V1,...,V, — V) and f is defined by
Yn
Yon—2
o |t — G| F OV G+ D =V +d) -]
fY,u) = : )
Y2n—2 _ Y2n-—3 b n— d) — n— d) — Yon—
. { T (yn_ﬁd)Q} [V s+ d) — V(s +d) — yn_s]
g _Y2m-2 — — v
u—a Bt bV + )= (201~ gan-z +7)]

u

Notice that the vector Y has 2n — 1 component: n — 1 differences between the headway of the n — 1
not controlled vehicles and the equilibrium headway d, n — 1 velocity differences with leading vehicle for
the not controlled vehicles and the difference of AV velocity with the equilibrium ones. Moreover we
have the relation z1 —z, = L — 37" y; + (n — 1)d expressing the headway of the AV. We are interested
in speed equilibria with equispaced cars, thus we notice that Y* = 0 € R?*" ™! is the only equilibrium of
(8) if b # 0 and w = 0. In other words (Y*,0) is a speed equilibrium of the controlled system (8), i.e.
f(Y*,0) = 0. Notice that for d = %, V(d) = v, at the speed equilibrium (0, 0) all vehicles are equispaced
and drive at the same speed v; = 7.

We are now ready to state the controllability results for the linearized systems at equilibria. First we
have the following:

Theorem 3. Let b =0, a # 0 and (d,9) € RZ.. The linearization of system (8) at the speed equilibrium
(Y*,0) € R®™ is not controllable.



In other words the linearization FTL model at speed equilibrium is not controllable. This does not
prevent the nonlinear system to be controllable, but prevents the use of simple linear controls to drive
the system to equilibrium.

Our next result is the following:

Theorem 4. Let a = 0, b # 0, (d,9) € RA with V(d) = 9. The linearization of system (8) at the
speed equilibrium (Y*,0) € R®™ is controllable. Therefore, the nonlinear control system (8) is locally
controllable at (Y*,0).

Finally for the combined FTL-OV model we have the following:

Theorem 5. We assume that n < 9. Let (a,b) # 0, (d,7) € R3 with V(d) = 0. Ifa # (y* +d)V'(y* +
d) and b # 0, the linearization of system (8) at the equilibrium point (Y*,0) € R®" is controllable.
Therefore, the nonlinear control system (8) is locally controllable at (Y™,0).

Remark 2. Since the Optimal Velocity model is locally controllable, one expect the same to be true for
the combined FTL-OV model, except possibly some resononant value of the parameters. This is exactly
what it proved in Theorem 5. The complexity of the system does not allow to deal with arbitrary large
dimensione (only for n < 9), but we conjecture that, for n > 9, the nonlinear control system (8) is still
locally controllable at (Y™, 0).

The proofs of the Theorems are postponed to the Appendix.

4 Controls and simulations

In this Section we describe control algorithms to stabilize a FTL-Bando model to a speed equilibrium
and test them in silico, i.e. via simulations, on a setting reproducing the Sugiyama experiment [53].

We start defining a Proportional-Integral-Derivative (PID)-type control, which is based on velocity mea-
sures of the AV over a fixed time horizon. The control includes saturation terms to avoid collisions and
too large headways for the AV. Then we define controls based on Lyapunov functions, using the fact
that the system is control affine, see see [3, Definition 3.12], i.e. the control appear linearly with a vector
coefficient depending on state. Such techniques are usually referred to as Jurdjevic-Quinn controls [24].

4.1 PID control

The idea behind this controller is that the autonomous vehicle may estimate the average speed of the
vehicles in front, and then drive according to the average speed, safety permitting. An estimate of the
average speed required by the controller is obtained by measuring the autonomous vehicle speed over a
large enough time horizon. Note that this requires that there are several waves present, not just a single
one, so that the past is informative of the future.

The controller determines a command velocity u following a standard proportional integral control
logic. In order for the controller to be efficient it needs to be augmented with saturation: for small gaps
the autonomous vehicle should follow the lead vehicle speed to avoid dangerous situations, while for large
gaps, the autonomous should catch up to the lead vehicle.

More precisely, this controller estimates the desired velocity, Vg, as a temporal average of the au-
tonomous vehicle’s own velocity over an interval. Letting vV, ..., vV denote the autonomous vehi-
cles velocities over the last m measurements, the desired velocity is computed as the temporal average
Va = % Z;n:1 v]AV. In practice, we choose m corresponding to a 38 second interval, which is approxi-
mately the time required to travel one lap around the ring.

The desired average velocity is then translated into a target velocity depending on the current gap
between the autonomous vehicle and lead vehicle:

0 = Vg + 12 x min(max(255:2,0),1) , (10)

This allows the autonomous vehicle to drive faster than the average velocity and catch up to the lead
vehicle, should it face a big gap, while at lower gaps the target velocity reduces to the average Vj.
The commanded velocity is updated via:

w1 = B(a05 % + (1 — ay)o™) + (1= Bj)uy (11)



where the subscript j denotes the time step. This rule (11) chooses the new commanded velocity as a
weighted average of the prior commanded velocity, the target velocity, and the lead vehicle’s velocity.
The weights «; and 8; depend on the gap as follows:

o = rnin(maux(Amfwas7 0),1) (12)

In (12), the distance Az® is a safety distance. We have a;; = 0 if Az < Az® and a; = 1 if Az > Az®+,
meaning that for relatively short gaps, only the lead vehicle’s velocity matters, while for relatively large
gaps, only the target velocity is averaged with the commanded velocity. The parameter -y controls the the
rate at which « transitions from 0 to 1, and is set to v = 2 m in the current implementation. This means
that when the gap is short, the autonomous vehicle has the same speed of the lead vehicle, while when
the gap is larger the autonomous speed tends towards the target vehicle, which allows the autonomous
vehicle to reduce the gap with the lead vehicle. The parameter 5; determines how rapidly the controller
adjusts to new situations (with more rapid adjustments occurring in more safety-critical situations).
At its core, this is a PID controller, but with a saturation at small gaps (for safety purposes), and a
saturation at large gaps (so that the autonomous vehicle closes gaps).

The safety distance is implemented as Az® = max(2 s X Av,4 m). The term 2 s x Av represents the
recommended safe following headway of 2 s, with a lower bound of 4 m.

4.2 Lyapunov functions and controls

The system (8) is a control affine system (see [3, Definition 3.12]). More precisely, (8) can be written as
Y = fap(Y) +ufi(Y),
with fo,5(Y) given by (9) with v = 0 and and

A =1 o

—_

1

Since we want to steers the system towards the speed equilibrium, we can consider the control
Lyapunov function V1(Y) = v, — ¥ = yan—1. Then its derivative along trajectories is given by VV; -
(fap(Y)+ufi(Y)) =e2n—1- (fas(Y)+ufi(Y)) = u. To maximize the decrease we can simply choose

UL = —Yon—1 = —(’Un — 5). (13)
Such control is smooth, vanishes at 0, and globally asymptotically stabilizes to the speed equilibrium.
Remark 3. To have a different gain we may choose the control uq = —aysn—1 = —a(v, —0) with a > 0.

Let us now focus on last two components:

’ Y2n—2
Yon—2 ) _ (0T )2 (14)
Yon—1 u '

We introduce the control Lyapunov function:

v3 y3
Va(Y) = 22nol 2 for every Y = Yan=2 ) ¢ R2,
2 2 Yon—1
For every Y € R*\{(0,0)}, choosing u = —esign(y2n—1 + y2n—2) with € > 0, we have, VVa(Y) - f(Y,u) =

(y2n—2 + Yan—1)u —a (z’f’j__d; < 0. Thus, V4 is a control Lyapunov function for the control system (14)

satisfying the small control property (see [3, definition 12.1]). Using [3, Theorem 12.4]), the control

n—1+70
U2 = —(Yan—1 + Y2n—2) = — (Un - %) , (15)

is smooth, vanishes at 0 € IR? and globally asymptotically stabilizes the control system (14).
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Figure 2: Vehicle trajectories with no control. Note the red trajectory follows a single vehicle which acts
identically to all grey trajectories.

4.3 Simulations

In this section we demonstrate the capabilities of the control laws described in the previous sections via
numerical simulations. The parameters used for the simulations are as follows. We consider N = 22
vehicles, with one autonomous vehicle and N = 21 human-driven vehicles. We consider that the human-
driven vehicles follow the dynamics described in (7) with the following parameters a = 0.5m/s? and
b =20s"'. The speed vmax = 9.75m/s and the vehicle length is chosen to be I, = 4.5m. Such parameters
allow to fit the data from the experiment of [53], see Figure 2. In the Figure, the red trajectory corresponds
to the autonomous vehicle and the grey ones to human-driven vehicles. One can notice the appearance
of strong stop and go waves that start at time 60s and are propagated on the ring. Visually, there have
the effect of “wrinkles” in the pattern.

For comparison, we can now see the effects of the different controls. For the autonomous vehicle we
will chose a different dynamics according to the control strategy that we are going to simulate. The
simulation begins with all vehicles using the human driving dynamics described in (7) with no control.
Control on the AV is activated after ¢ = 40s.

In Figure 3, we can see the effects of the PID control on vehicle trajectories and on the speed profile
in Figure 4. Figure 3 shows that the AV leaves some extra headway to tame the effect of the stop and
go waves. Such waves continue to reappear but the control is able to dissipate partly the effects. The
velocity profiles, Figure 4, show a strong oscillation reduction for the AV in the time interval [60,100],
then oscillations affect the AV and finally are more under control after time ¢t = 160.

Next we show that stop and go waves can be dampened using the control laws (13) and (15). Since
the autonomous vehicle used in the experiment runs with velocity control, we will slightly modify our
controls (13) and (15) as follows; let u; € R4 defined by u; = u(t;) with t; = j* At, 7 € N and A¢ > 0.
First, combining (13) with (7), we have v, = —(v,, — ¥) with © € R4. Thus, the target velocity is

vf;_gff = (uj; — 0) exp(—At) + . (16)

Since vr—1(8) = vp—1(t) := vp—_1,; for every s € [t;,t; + At), combining (15) with (7), the target velocity
is _

of5 = (wy = = expl(- ) +
From now on, o is a function depending on time and at every time t > 0, (¢) is constructed as the
minimum of the temporal average speeds of the lead vehicle and the autonomous vehicle over (0,t).
More precisely, the target velocity is

j—1 lead j—l i
U; = min (Zi_l Y i v ) (18)

Unz1y 0 (17)

i—1 -1
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Figure 6: Vehicles trajectories when using the control (19) with (17).

The theory described in Section 4.2 is still useful because, for j large enough, v; =~ ¢ with ¢ > 0 a
constant. Adding the rule (11) described in Section 4.1, the commanded velocities for (16) and (17) are
updated via

ujrr = B(agoilyE 4+ (1= o)™ ) + (1= Bj)u; , ke {1,2}. (19)
where v}"#" and vy"7®" are defined in (16) and (17) respectively replacing © by ®; defined in (18).

Above, a’j and f; are constructed as explained in Section 4.1. In Figure 5 and in Figure 6, we use the
commanded velocity defined in (19) with vi‘:‘;get and vg?;get respectively. Since the autonomous vehicle
drives according to (18), a gap is created when the lead car is affected by a stop and go wave.The
difference between these controls and the PID control, defined in Section 4.1, is that the autonomous
vehicle never needs to catch up the lead vehicle and therefore it doesn’t create another stop and go wave
for the controls defined in (19). More precisely, the term min(max(£2="0,0),1) in (10) is not needed
anymore. Moreover, in (18), we don’t use that the length of the ring is equal to L.

The effect of the Lyapunov controllers can be seen in the velocity profiles in Figures 7, 8 which
shows that the traffic is smoother when the control is active. More precisely, in Figure 7, we notice
that the AV tends to have very small oscillations when the control is active. On the other side, the
not controlled vehicles tend to keep some velocity oscillations, however apparently less than the PID
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Figure 7: Simulated velocity profiles of human-piloted vehicles (grey) and autonomous vehicle (red) when
using the control (19) with (16).
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Figure 8: Simulated velocity profiles of human-piloted vehicles (grey) and autonomous vehicle (red) when
using the control (19) with (17).
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Mean fuel consumption Standard deviation

Control (¢/100 km) (¢/100 km)
No control 21.93 0.94
PID controller (11) 18.36 0.35
(19) with (16) 18.03 0.46
(19) with (17) 18.13 0.65

Table 1: Simulation fuel consumption estimates over an ensemble of 10 simulation runs using the VT-Micro
fuel consumption model.

controller. The interesting fact about this control is that the system, once introduced the saturation,
tends to find local equilibrium and with some initial data might only dampen the stop and go waves
without dissipating them. Figure 8 show a behavior pretty similar to that of the PID controller, with
even stronger oscillations for the AV.

4.4 Fuel consumption

Fuel consumption is estimated for the simulation results using the VT-Micro fuel consumption model [45,

]. The VT-Micro model uses polynomial regression on vehicle fuel consumption data collected at Oak
Ridge National Lab to predict fuel consumption based on vehicle speed and acceleration. In simulation,
per-vehicle fuel consumption averaged over an ensemble of 10 simulation runs when all traffic is under
human control is 21.93 £/100 km. When the PID controller (11) is implemented on the AV in simulation
and the remaining 21 vehicles are under human control, the average per-vehicle fuel consumption is
reduced by 16.3% to 18.36 ¢/100 km. Similarly, when the controller in (19) with (16) is used on the
AV, the average per-vehicle fuel consumption is reduced by 17.8% to 18.03 £/100 km, while when the
controller in (19) with (17) is used on the AV, the average per-vehicle fuel consumption is reduced by
17.3% to 18.13 £/100 km. The fuel consumption means over the 10 simulation runs conducted and
corresponding standard deviations are presented in Table 1. As described in Section 4.3, the Lyapunov
controllers might not always dissipate the stop-and-go waves which results in a higher standard deviation
for the mean fuel consumption in Table 1 for these controls.

5 Experimental results

5.1 Experimental design

A series of experiments were conducted to validate the development of stop and go traffic waves and to
demonstrate the dissipation of these waves using the designed controller. We first describe the experiment
setup and its benefits and limitations. Then we present the experimental results of a low penetration
rate of autonomous vehicles actively dissipating stop and go waves.

The experiments are conducted using a similar setup to the seminal works of Sugiyama, et al. [53] and
Tadaki, et al. [56], which was able to isolate human driving behavior without considering other factors.
These experiments showed conclusively that human driving behavior alone is sufficient to trigger stop
and go waves. In this experiment, we use the same setup because it has been shown to reliably produce
the kinds of stop and go waves that the controllers in this paper are designed to dampen.

While the underlying experimental setup in the work presented is similar to the setup used by
Sugiyama, et al. [53], minor modifications were made to accommodate for the larger US vehicles. Just
as in [53], the experiment is conducted with a total of 22 vehicles on the track. However, due to the
substantially larger US vehicles, the track length was increased to 260 m around. While all vehicles
have human-drivers in them, one of the vehicles, the University of Arizona Cognitive Autonomous Test
Vehicle (CAT Vehicle) is an autonomous-capable vehicle and can be switched from being human-piloted
to autonomous during the experiment.

The experiment begins with all vehicles evenly spaced and at rest. When the drivers are given a
signal, they begin to drive, and human-piloted traffic conditions are observed. After some time the
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Figure 9: Vehicles on test track during the experi-

ment.

autonomous driving capabilities of the CAT Vehicle are activated, and traffic with 21 human-drivers and
one autonomous vehicle is observed.

Vehicle trajectories of each vehicle were collected using a VSN Mobile V860 panoramic video camera
placed at the center of the track. The video footage recorded during the experiment was processed using
image processing algorithms. More details on the image processing algorithms used can be found in the
article by Wu, et al. [59]. Additionally, vehicle performance data such as fuel consumption was recorded
during the experiment using OBDLink MX onboard diagnostics (OBD-II) data loggers.

The ring-road experimental design is selected because it has been shown to produce traffic instabil-
ities that are similar to those observed in real highway traffic [53]. Furthermore, using a closed-circuit
experimental test track allowed us to reproduce “infinite” traffic (where each vehicle has a vehicle in
front of it and a vehicle behind it at all times) with a finite number of vehicles. However, there are some
limitations that arise due to this experimental design. Since the track is only a single lane of traffic, this
experimental setup cannot be used to assess the robustness of the designed algorithm to overtaking and
merging.

5.2 Experimental results

An experiment was conducted to test the PID velocity controller in a field test. The experiment was
conducted on a large flat parking lot in Tucson, AZ. The human-piloted vehicles used during this exper-
iment were rented from the University of Arizona Motor Pool, while the AV that was used was the CAT
Vehicle. An overview of the test track is seen in Figure 9 where all 22 vehicles are on the track following
the experiment. The AV used to implement the traffic controller, the University of Arizona CAT Vehicle,
is seen in Figure 10 being parked at the start position for the experiment.

The experiment is started with all vehicles at rest on the track and under human control. The
velocity profile and vehicle trajectories for all vehicles in the experiment is presented in Figure 11 and
Figure 12, respectively. Here, the CAT Vehicles speed and trajectory are plotted in red, while the speed
and trajectory for the remaining vehicles are plotted in grey. After 161 seconds the small oscillations
grow, and a noticeable stop and go wave develops. In the presence of this wave, vehicles fluctuate in
speed between 0 m/s and 14 m/s as seen in Figure 11. This same stop and go wave is also seen in the
vehicle trajectories in Figure 12. After 218 seconds the controller on the CAT Vehicle is activated and
the traffic is under AV control. This control action is maintained until the experiment is ended after 413
seconds.

As seen in the vehicle trajectories in Figure 12, after roughly 320 seconds, one of the human-piloted
vehicles introduces a small traffic wave. This wave propagates upstream until it encounters the CAT
Vehicle, which is able to partially dampen, but not fully remove the wave. On the second pass around
the track, the CAT Vehicle is able to fully eliminate the wave. This demonstrates that a single AV may
not be sufficient to fully eliminate stop and go waves, but a low penetration rate of AVs may be sufficient
to eliminate, or at least substantially dampen stop and go waves.
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Figure 11: Velocity profile of all vehicles in the experiment. The grey velocity profiles are the human-piloted
vehicles and the red profile is the CAT Vehicle. The blue vertical lines mark key times during the experiment:
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Figure 12: Trajectories of all vehicles in the experiment. The grey trajectories are the human-piloted vehicles
and the red trajectory is the CAT Vehicle. The blue vertical lines mark key times during the experiment:
the start, at what point waves are clearly visible, when control of the CAT Vehicle is activated, and the end
of the experiment.
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The effect that the traffic controller implemented on the single AV has on the overall traffic flow (all
21 human-piloted vehicles in addition to the CAT Vehicle) is apparent in the velocity profile in Figure 11
and vehicle trajectories 12 where substantially smoother traffic is seen when the traffic is under the
control of the AV. Specifically, the average velocity standard deviation between the time period where
waves are present and the control period is reduced by 54.7% from 3.85 m/s to 1.74 m/s while not
substantially effecting throughput (1755 veh/hr when waves are present and 1711 veh/hr when the AV
is actively dissipating the stop and go waves, or a reduction of 2.5%). Furthermore, since each vehicle
in the flow was instrumented with an OBD-II scanner, it was possible to measure the instantaneous fuel
consumption of each vehicle during the experiment. The average fuel consumption over the entire fleet
when waves are present was 26.3 £/100 km, while the average fuel consumption of all vehicles when the
AV is actively dissipating stop and go waves is reduced by 20.7% to 26.3 £/100 km. It is important to
note that this reduction in fuel consumption is not only realized on the CAT Vehicle, but is the averaged
quantity across all vehicles in the experiment.

This experimental result validates the theoretical and simulation-based results and demonstrates that
even at a low penetration rate, AVs are capable of substantially improving traffic flow by reducing velocity
standard deviation. This leads to smoother traffic and reduces fuel consumption of not only the AV, but
all the vehicles in the traffic flow.

6 Conclusion

In this work we establish controllability results for two well known microscopic traffic flow models in the
setting in which an autonomous vehicle is able to be controlled with the aim of dissipating stop and go
traffic waves. Based on the controllability results, three control algorithms are developed and tested in
simulation, indicating that fuel consumption reductions of up to 20% may be achieved when the flow is
stabilized by the autonomous vehicle. In a first of its kind field test, we further establish for one of the
proposed control algorithms that traffic wave dissipation is possible with real autonomous and human
piloted vehicles, and leads to a substantial reduction in fuel consumption compared to when waves are
present.

While our results show the feasibility of control of traffic via AV, especially for fuel consumption
reduction, there are some limitations to our study. For instance multilane traffic was not considered and,
more generally, we did not include additional challenges coming from the impact of combined complex
phenomena of multilane dynamics, merges, ramps, and non-FIFO assumptions.

Looking forward, we note that the level of difficulty to prove controllability results of the combined
optimal velocity follow the leader model for n > 9 suggests alternate modeling scales, e.g., in the micro-
macro direction [11, 6, 28, 40], might be promising.
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Appendix

The linearization of system (8) at the equilibrium point (Y*,0) € R*" is described by

Y = AY + Bu, (20)

18



where

0
Onfl Infl
A= and B = . (21)
anl anl 0
1
[0 0] 1
For n € IN define the matrices (Dy—1, F,—1) € Ma,_1(R)? by
— v (0) —(a+0) e} . (0)
Dy 1= _fy.‘.". y Fno1 = 7(Oé+b) . (22)
. o1 L . o
(0) Y (0) ~(a+b)

with v = bV'(y* +d) and a = T taz- Moreover, denote by 0n—1 € Myn_1(R) and 1 € Mn_1(R)
the zero matrix and the identity matrix respectively. Let k > 1. From (21), there exist (A; x)ieq1,... 43 €
Mnfl(]R) and (Ci,k)ie{Lz} € Mp—1,1(R) such that,

A1,1€ Az,k Cl,k
AF = As g Asrg Copl,
Ol,n—l Ol,n—l 0

and for every k > 1 we have

As 1 = DnaAop + Fa1A4y,
Az k1 = Aap,

23
Cokt1 = DnaCrk + Frum1Ca g, (23)
Cirt1 = Cop.
In particular, for every k > 2,
Asp+1 = Dn1As -1+ Fro1Aak,
Ao k41 = Dp-1A2 k-1 + Fno1A2k, (24)

Cokt1 = Dn1Co 1 + Fr1Co
Cok = Dp1Cy -1 + Frno1Ch k.

Combining (23) with (24) and using that, for every k > 1, A*B(2n — 1) = 0, we conclude that, for every
k> 2,

A"'B =DA" 'B+ FA*B, (25)
with
anl Onfl 0 anl Onfl 0
D= On—l Dn71 0 and .F = Onfl Fn71 0f . (26)
Ol,n—l Ol,n—l 0 Ol,n—l Ol,n—l 0
Moreover, we have
On—2,1 On—2,1
1 b
A’B =X + Fo,_1AB with AB= 2”*3’1 and X = 3"*3*1 : (27)
—a —
0 0

19



Proof of Theorem 3. If b =0 then v = 0. From (25) and (27), for every k > 2,

A = FAFB,
A%’B = FAB.

Thus, the Kalman controllability matrix (6) satisfies
rank (K (A, B)) = rank (B, AB, FAB,--- ,F"""*AB).

By Cayley-Hamilton Theorem, there exists (ao,- -+ ,an—2) € R™ ! such that F"~} = 2:02 o Fl_y.
From (26), we conclude that

rank (K (A, B)) = rank (B, AB, FAB, -+ ,F" ?AB).

Ef iy Op-1 O
Using the expression of AB given in (27) and the equality F* = | 0,_; FF_, 0}, by straightforward
Oi,n—1 O1n—1 O
computations, we have
rank (B, AB, FAB,--- ,F" ?AB) =n,

whence the conclusion.

Proof of Theorem 4. Let’s prove by induction that, for every k > 1, there exist ()‘i)¢:1,~»,2k and
(Wi)i=1.... agy1 such that
{ AR — 372 N A'B + D*(AB) (P
A2k+2B — E?iirl ,U/ZAZB + Dk(AQB) k
Since @ = 0, we have F,,_; = —bl,_1. Using (25), A*B = DAB — bA’B and A’B = DA’B — bA®B.
Thus, (Py) holds for kK = 1. Assuming that (P) holds for kK = p. From (25), we have

AT = DAL _pATIpR i i i )
{ A2p+4 — DA2p+2 _ bA2p+3B and DA'B=A +QB + bA +137 2 2 1. (28)
Using (28) and (P) for k = p, we conclude that (P) holds for k = p + 1.
The equality (Py) for k =n — 2 gives

rank(K(A,B)) = (B,AB,--- ,A*"7°, D" ?A’B)
= (B,AB,--- ,A>""*, D" ?AB, D" *A’B)
= (B,AB,A’B,DAB,DA’B,--- ,D" ?AB, D" ?A’B) .

Df i Ono1 O
Since AB and A?B are linearly independent and P* = | 0,_; DF_, 0
O1,n—1 O1n—1 O

, by straightforward com-

putations, we have
rank (B, AB, A’B,DAB,DA’B,--- , D" >AB,D" ?A’B) = 2n — 1.
Thus, the linearization of system (8) at the equilibrium point (Y*,0) is controllable. Using [8, Theorem
3.8], Theorem 4 is proved.
Proof of Theorem 5. Using using the symbolic mathematics software Maple [https://www.maplesoft.
com/products/Maple/|, we establish that for every 3 < n <9,
Wr2—77,

Det(K(4,B) =7 # 7 0"2" (a= 1) 7

Thus, for every oo # %, v # 0, b # 0, the linearization of system (8) at the equilibrium point (Y*,0) is
controllable, whence the conclusion of Theorem 5 by using [8, Theorem 3.8].
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