282 research outputs found

    national seasonal influenza vaccination survey in europe 2008

    Get PDF
    A cross-sectional survey was undertaken with the European Union (EU) Member States and Norway and Iceland to describe seasonal influenza immunisation in the 2006-7 season, in particular to identify country-specific recommendations for risk groups, obtain vaccine uptake information and allow comparison with global recommendations. A standardised questionnaire was completed electronically by each country's project gatekeeper. Of the 29 countries surveyed, 28 recommended seasonal influenza vaccination for older age groups (22 for those aged > 65 years), and in one country vaccine was recommended for all age groups. All countries recommended vaccinating patients with chronic pulmonary and cardiovascular diseases and most countries advised to immunise patients with haematologic or metabolic disorders (n=28), immunologic disorders (n=27) and renal disease (n=27), as well as residents of long-term care facilities (n=24). Most countries recommended vaccination for staff in hospitals (n=25), long-term care facilities (n=25) and outpatient clinics (n=23), and one-third had such recommendations for workers in essential (n=10), military (n=10) and veterinary services (n=10) and poultry industry (n=13). Eight countries recommended vaccine for pregnant women; and five advised to vaccinate children (with age limits ranging from 6 months to 5 years). Twenty countries measured influenza vaccine uptake among those aged > 65 years (range 1.8%-82.1%), seven reported uptake in healthcare workers (range 14%-48%) and seven assessed coverage in persons with underlying medical conditions (range 27.6%-75.2%). The data provided by this study can assist EU states to assess and compare their influenza vaccination programme performance with other countries. The information provides a comprehensive overview of policies and programmes and their outcomes and can be used to inform joint discussions on how the national policies in the EU might be standardised in the future to achieve optimal coverage. Annual surveys could be used to monitor changes in these national policies

    Epidemiology of Neonatal Acute Respiratory Distress Syndrome:Prospective, Multicenter, International Cohort Study

    Get PDF
    OBJECTIVES: Age-specific definitions for acute respiratory distress syndrome (ARDS) are available, including a specific definition for neonates (the "Montreux definition"). The epidemiology of neonatal ARDS is unknown. The objective of this study was to describe the epidemiology, clinical course, treatment, and outcomes of neonatal ARDS. DESIGN: Prospective, international, observational, cohort study. SETTING: Fifteen academic neonatal ICUs. PATIENTS: Consecutive sample of neonates of any gestational age admitted to participating sites who met the neonatal ARDS Montreux definition criteria. MEASUREMENTS AND MAIN RESULTS: Neonatal ARDS was classified as direct or indirect, infectious or noninfectious, and perinatal (≤ 72 hr after birth) or late in onset. Primary outcomes were: 1) survival at 30 days from diagnosis, 2) inhospital survival, and 3) extracorporeal membrane oxygenation (ECMO)-free survival at 30 days from diagnosis. Secondary outcomes included respiratory complications and common neonatal extrapulmonary morbidities. A total of 239 neonates met criteria for the diagnosis of neonatal ARDS. The median prevalence was 1.5% of neonatal ICU admissions with male/female ratio of 1.5. Respiratory treatments were similar across gestational ages. Direct neonatal ARDS (51.5% of neonates) was more common in term neonates and the perinatal period. Indirect neonatal ARDS was often triggered by an infection and was more common in preterm neonates. Thirty-day, inhospital, and 30-day ECMO-free survival were 83.3%, 76.2%, and 79.5%, respectively. Direct neonatal ARDS was associated with better survival outcomes than indirect neonatal ARDS. Direct and noninfectious neonatal ARDS were associated with the poorest respiratory outcomes at 36 and 40 weeks' postmenstrual age. Gestational age was not associated with any primary outcome on multivariate analyses. CONCLUSIONS: Prevalence and survival of neonatal ARDS are similar to those of pediatric ARDS. The neonatal ARDS subtypes used in the current definition may be associated with distinct clinical outcomes and a different distribution for term and preterm neonates

    Differential response of human basophil activation markers: a multi-parameter flow cytometry approach

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Basophils are circulating cells involved in hypersensitivity reactions and allergy but many aspects of their activation, including the sensitivity to external triggering factors and the molecular aspects of cell responses, are still to be focused. In this context, polychromatic flow cytometry (PFC) is a proper tool to investigate basophil function, as it allows to distinguish the expression of several membrane markers upon activation in multiple experimental conditions. </p> <p>Methods</p> <p>Cell suspensions were prepared from leukocyte buffy coat of K2-EDTA anticoagulated blood specimens; about 1500-2500 cellular events for each tested sample, gated in the lymphocyte CD45dim area and then electronically purified as HLADRnon expressing/CD123bright, were identified as basophilic cells. Basophil activation with fMLP, anti-IgE and calcium ionophore A23187 was evaluated by studying up-regulation of the indicated membrane markers with a two-laser six-color PFC protocol.</p> <p>Results</p> <p>Following stimulation, CD63, CD13, CD45 and the ectoenzyme CD203c up-regulated their membrane expression, while CD69 did not; CD63 expression occurred immediately (within 60 sec) but only in a minority of basophils, even at optimal agonist doses (in 33% and 14% of basophils, following fMLP and anti-IgE stimulation respectively). CD203c up-regulation occurred in the whole basophil population, even in CD63non expressing cells. Dose-dependence curves revealed CD203c as a more sensitive marker than CD63, in response to fMLP but not in response to anti-IgE and to calcium ionophore.</p> <p>Conclusion</p> <p>Use of polychromatic flow cytometry allowed efficient basophil electronic purification and identification of different behaviors of the major activation markers. The simultaneous use of two markers of activation and careful choice of activator are essential steps for reliable assessment of human basophil functions.</p

    Obesity, Ethnicity, and Risk of Critical Care, Mechanical Ventilation, and Mortality in Patients Admitted to Hospital with COVID-19: Analysis of the ISARIC CCP-UK Cohort

    Get PDF

    Erratum to: 36th International Symposium on Intensive Care and Emergency Medicine

    Get PDF
    [This corrects the article DOI: 10.1186/s13054-016-1208-6.]

    Risk of adverse outcomes in patients with underlying respiratory conditions admitted to hospital with COVID-19:a national, multicentre prospective cohort study using the ISARIC WHO Clinical Characterisation Protocol UK

    Get PDF
    Background Studies of patients admitted to hospital with COVID-19 have found varying mortality outcomes associated with underlying respiratory conditions and inhaled corticosteroid use. Using data from a national, multicentre, prospective cohort, we aimed to characterise people with COVID-19 admitted to hospital with underlying respiratory disease, assess the level of care received, measure in-hospital mortality, and examine the effect of inhaled corticosteroid use. Methods We analysed data from the International Severe Acute Respiratory and emerging Infection Consortium (ISARIC) WHO Clinical Characterisation Protocol UK (CCP-UK) study. All patients admitted to hospital with COVID-19 across England, Scotland, and Wales between Jan 17 and Aug 3, 2020, were eligible for inclusion in this analysis. Patients with asthma, chronic pulmonary disease, or both, were identified and stratified by age (<16 years, 16–49 years, and ≥50 years). In-hospital mortality was measured by use of multilevel Cox proportional hazards, adjusting for demographics, comorbidities, and medications (inhaled corticosteroids, short-acting β-agonists [SABAs], and long-acting β-agonists [LABAs]). Patients with asthma who were taking an inhaled corticosteroid plus LABA plus another maintenance asthma medication were considered to have severe asthma. Findings 75 463 patients from 258 participating health-care facilities were included in this analysis: 860 patients younger than 16 years (74 [8·6%] with asthma), 8950 patients aged 16–49 years (1867 [20·9%] with asthma), and 65 653 patients aged 50 years and older (5918 [9·0%] with asthma, 10 266 [15·6%] with chronic pulmonary disease, and 2071 [3·2%] with both asthma and chronic pulmonary disease). Patients with asthma were significantly more likely than those without asthma to receive critical care (patients aged 16–49 years: adjusted odds ratio [OR] 1·20 [95% CI 1·05–1·37]; p=0·0080; patients aged ≥50 years: adjusted OR 1·17 [1·08–1·27]; p<0·0001), and patients aged 50 years and older with chronic pulmonary disease (with or without asthma) were significantly less likely than those without a respiratory condition to receive critical care (adjusted OR 0·66 [0·60–0·72] for those without asthma and 0·74 [0·62–0·87] for those with asthma; p<0·0001 for both). In patients aged 16–49 years, only those with severe asthma had a significant increase in mortality compared to those with no asthma (adjusted hazard ratio [HR] 1·17 [95% CI 0·73–1·86] for those on no asthma therapy, 0·99 [0·61–1·58] for those on SABAs only, 0·94 [0·62–1·43] for those on inhaled corticosteroids only, 1·02 [0·67–1·54] for those on inhaled corticosteroids plus LABAs, and 1·96 [1·25–3·08] for those with severe asthma). Among patients aged 50 years and older, those with chronic pulmonary disease had a significantly increased mortality risk, regardless of inhaled corticosteroid use, compared to patients without an underlying respiratory condition (adjusted HR 1·16 [95% CI 1·12–1·22] for those not on inhaled corticosteroids, and 1·10 [1·04–1·16] for those on inhaled corticosteroids; p<0·0001). Patients aged 50 years and older with severe asthma also had an increased mortality risk compared to those not on asthma therapy (adjusted HR 1·24 [95% CI 1·04–1·49]). In patients aged 50 years and older, inhaled corticosteroid use within 2 weeks of hospital admission was associated with decreased mortality in those with asthma, compared to those without an underlying respiratory condition (adjusted HR 0·86 [95% CI 0·80−0·92]). Interpretation Underlying respiratory conditions are common in patients admitted to hospital with COVID-19. Regardless of the severity of symptoms at admission and comorbidities, patients with asthma were more likely, and those with chronic pulmonary disease less likely, to receive critical care than patients without an underlying respiratory condition. In patients aged 16 years and older, severe asthma was associated with increased mortality compared to non-severe asthma. In patients aged 50 years and older, inhaled corticosteroid use in those with asthma was associated with lower mortality than in patients without an underlying respiratory condition; patients with chronic pulmonary disease had significantly increased mortality compared to those with no underlying respiratory condition, regardless of inhaled corticosteroid use. Our results suggest that the use of inhaled corticosteroids, within 2 weeks of admission, improves survival for patients aged 50 years and older with asthma, but not for those with chronic pulmonary disease
    corecore