182 research outputs found

    The mechanics of nectar offloading in the bumblebee Bombus terrestris and implications for optimal concentrations during nectar foraging.

    Get PDF
    Nectar is a common reward provided by plants for pollinators. More concentrated nectar is more rewarding, but also more viscous, and hence more time-consuming to drink. Consequently, theory predicts an optimum concentration for maximizing energy uptake rate, dependent on the mechanics of feeding. For social pollinators such as bumblebees, another important but little-studied aspect of foraging is nectar offloading upon return to the nest. Studying the bumblebee Bombus terrestris, we found that the relationship between viscosity (”) and volumetric transfer rates (Q) of sucrose solutions differed between drinking and offloading. For drinking, Q ∝ ”-0.180, in good agreement with previous work. Although offloading was quicker than drinking, offloading rate decreased faster with viscosity, with Q ∝ ”-0.502, consistent with constraints imposed by fluid flow through a tube. The difference in mechanics between drinking and offloading nectar leads to a conflict in the optimum concentration for maximizing energy transfer rates. Building a model of foraging energetics, we show that including offloading lowers the maximum rate of energy return to the nest and reduces the concentration which maximizes this rate by around 3%. Using our model, we show that published values of preferred nectar sugar concentrations suggest that bumblebees maximize the overall energy return rather than the instantaneous energy uptake during drinking.This work was supported by a Biotechnology and Biological Sciences Research Council PhD Studentship under grant BB/J014540/1 to J.G.P

    Optimal Sensor Placement with Adaptive Constraints for Nuclear Digital Twins

    Full text link
    Given harsh operating conditions and physical constraints in reactors, nuclear applications cannot afford to equip the physical asset with a large array of sensors. Therefore, it is crucial to carefully determine the placement of sensors within the given spatial limitations, enabling the reconstruction of reactor flow fields and the creation of nuclear digital twins. Various design considerations are imposed, such as predetermined sensor locations, restricted areas within the reactor, a fixed number of sensors allocated to a specific region, or sensors positioned at a designated distance from one another. We develop a data-driven technique that integrates constraints into an optimization procedure for sensor placement, aiming to minimize reconstruction errors. Our approach employs a greedy algorithm that can optimize sensor locations on a grid, adhering to user-defined constraints. We demonstrate the near optimality of our algorithm by computing all possible configurations for selecting a certain number of sensors for a randomly generated state space system. In this work, the algorithm is demonstrated on the Out-of-Pile Testing and Instrumentation Transient Water Irradiation System (OPTI-TWIST) prototype vessel, which is electrically heated to mimic the neutronics effect of the Transient Reactor Test facility (TREAT) at Idaho National Laboratory (INL). The resulting sensor-based reconstruction of temperature within the OPTI-TWIST minimizes error, provides probabilistic bounds for noise-induced uncertainty and will finally be used for communication between the digital twin and experimental facility

    FLORAL SCENT IN A WHOLE-PLANT CONTEXT Floral volatiles controlling ant behaviour

    Get PDF
    Summary 1. Ants show complex interactions with plants, both facultative and mutualistic, ranging from grazers through seed predators and dispersers to herders of some herbivores and guards against others. But ants are rarely pollinators, and their visits to flowers may be detrimental to plant fitness. 2. Plants therefore have various strategies to control ant distributions, and restrict them to foliage rather than flowers. These 'filters' may involve physical barriers on or around flowers, or 'decoys and bribes' sited on the foliage (usually extrafloral nectaries -EFNs). Alternatively, volatile organic compounds (VOCs) are used as signals to control ant behaviour, attracting ants to leaves and ⁄ or deterring them from functional flowers. Some of the past evidence that flowers repel ants by VOCs has been equivocal and we describe the shortcomings of some experimental approaches, which involve behavioural tests in artificial conditions. 3. We review our previous study of myrmecophytic acacias, which used in situ experiments to show that volatiles derived from pollen can specifically and transiently deter ants during dehiscence, the effects being stronger in ant-guarded species and more effective on resident ants, both in African and Neotropical species. In these plants, repellence involves at least some volatiles that are known components of ant alarm pheromones, but are not repellent to beneficial bee visitors. 4. We also present new evidence of ant repellence by VOCs in temperate flowers, which is usually pollen-based and active on common European ants. We use these data to indicate that across a wide range of plants there is an apparent trade-off in ant-controlling filter strategies between the use of defensive floral volatiles and the alternatives of decoying EFNs or physical barriers

    Humans Share More Preferences for Floral Phenotypes With Pollinators Than With Pests.

    Get PDF
    Studies on the selection of floral traits usually consider pollinators and sometimes herbivores. However, humans also exert selection on floral traits of ornamental plants. We compared the preferences of bumblebees (Bombus terrestris), thrips (Frankliniella occidentalis), and humans for flowers of snapdragon. From a cross of two species, Antirrhinum majus and Antirrhinum linkianum, we selected four Recombinant Inbred Lines (RILs). We characterised scent emission from whole flowers and stamens, pollen content and viability, trichome density, floral shape, size and colour of floral parts. We tested the preferences of bumblebees, thrips, and humans for whole flowers, floral scent bouquets, stamen scent, and individual scent compounds. Humans and bumblebees showed preferences for parental species, whereas thrips preferred RILs. Colour and floral scent, in combination with other floral traits, seem relevant phenotypes for all organisms. Remarkably, visual traits override scent cues for bumblebees, although, scent is an important trait when bumblebees cannot see the flowers, and methyl benzoate was identified as a key attractant for them. The evolutionary trajectory of flowers is the result of multiple floral traits interacting with different organisms with different habits and modes of interaction

    How can an understanding of plant-pollinator interactions contribute to global food security?

    Get PDF
    Pollination of crops by animals is an essential part of global food production, but evidence suggests that wild pollinator populations may be declining while a number of problems are besetting managed honey bee colonies. Animal-pollinated crops grown today, bred in an environment where pollination was less likely to limit fruit set, are often suboptimal in attracting and sustaining their pollinator populations. Research into plant-pollinator interactions is often conducted in a curiosity-driven, ecological framework, but may inform breeding and biotechnological approaches to enhance pollinator attraction and crop yield. In this article we review key topics in current plant-pollinator research that have potential roles in future crop breeding for enhanced global food security

    Control of nanoparticle size, reactivity and magnetic properties during the bioproduction of magnetite by Geobacter sulfurreducens

    Get PDF
    The bioproduction of nano-scale magnetite by Fe(III)-reducing bacteria offers a potentially tunable, environmentally benign route to magnetic nanoparticle synthesis. Here, we demonstrate that it is possible to control the size of magnetite nanoparticles produced by Geobacter sulfurreducens, by adjusting the total biomass introduced at the start of the process. The particles have a narrow size distribution and can be controlled within the range of 10-50 nm. X-ray diffraction analysis indicates that controlled production of a number of different biominerals is possible via this method including goethite, magnetite and siderite, but their formation is strongly dependent upon the rate of Fe(III) reduction and total concentration and rate of Fe(II) produced by the bacteria during the reduction process. Relative cation distributions within the structure of the nanoparticles has been investigated by X-ray magnetic circular dichroism and indicates the presence of a highly reduced surface layer which is not observed when magnetite is produced through abiotic methods. The enhanced Fe(II)-rich surface, combined with small particle size, has important environmental applications such as in the reductive bioremediation of organics, radionuclides and metals. In the case of Cr(VI), as a model high-valence toxic metal, optimised biogenic magnetite is able to reduce and sequester the toxic hexavalent chromium very efficiently in the less harmful trivalent form
    • 

    corecore