191 research outputs found

    On the magnetization of BL Lac jets

    Get PDF
    The current paradigm foresees that relativistic jets are launched as magnetically dominated flows, whose magnetic power is progressively converted to kinetic power of of the matter of the jet, until equipartition is reached. Therefore, at the end of the acceleration phase, the jet should still carry a substantial fraction (≈\approx half) of its power in the form of a Poynting flux. It has been also argued that, in these conditions, the best candidate particle acceleration mechanism is efficient reconnection of magnetic field lines, for which it is predicted that magnetic field and accelerated relativistic electron energy densities are in equipartition.Through the modeling of the jet non--thermal emission, we explore if equipartition is indeed possible in BL Lac objects, i.e. low-power blazars with weak or absent broad emission lines. We find that one-zone models (for which only one region is involved in the production of the radiation we observe) the particle energy density is largely dominating (by 1-2 orders of magnitude) over the magnetic one. As a consequence, the jet kinetic power largely exceeds the magnetic power. Instead, if the jet is structured (i.e. made by a fast spine surrounded by a slower layer), the amplification of the IC emission due to the radiative interplay between the two components allows us to reproduce the emission in equipartition conditions.Comment: 9 pages, 7 figures, improved version accepted by MNRAS for publicatio

    Charge-starved, relativistic jets and blazar variability

    Full text link
    High energy emission from blazars is thought to arise in a relativistic jet launched by a supermassive black hole. The emission site must be far from the hole and the jet relativistic, in order to avoid absorption of the photons. In extreme cases, rapid variability of the emission suggests that structures of length-scale smaller than the gravitational radius of the central black hole are imprinted on the jet as it is launched, and modulate the radiation released after it has been accelerated to high Lorentz factor. We propose a mechanism which can account for the acceleration of the jet, and for the rapid variability of the radiation, based on the propagation characteristics of large-amplitude waves in charge-starved, polar jets. Using a two-fluid (electron-positron) description, we find the outflows exhibit a delayed acceleration phase, that starts at roughly 1pc, where the inertia associated with the wave currents becomes important. The time-structure imprinted on the jet at launch modulates photons produced by the accelerating jet provided the pair multiplicity in the black-hole magnetosphere is sufficiently small, suggesting that very rapid variability is confined to sources in which the electromagnetic cascade in the black-hole magnetosphere is not prolific.Comment: 8 pages, 1 figure. Momentum equation corrected. Conclusions unchanged. Erratum submitted to Ap

    First NuSTAR Observations of Mrk 501 within a Radio to TeV Multi-Instrument Campaign

    Get PDF
    We report on simultaneous broadband observations of the TeV-emitting blazar Markarian 501 between 1 April and 10 August 2013, including the first detailed characterization of the synchrotron peak with Swift and NuSTAR. During the campaign, the nearby BL Lac object was observed in both a quiescent and an elevated state. The broadband campaign includes observations with NuSTAR, MAGIC, VERITAS, the Fermi Large Area Telescope (LAT), Swift X-ray Telescope and UV Optical Telescope, various ground-based optical instruments, including the GASP-WEBT program, as well as radio observations by OVRO, MetsÀhovi and the F-Gamma consortium. Some of the MAGIC observations were affected by a sand layer from the Saharan desert, and had to be corrected using event-by-event corrections derived with a LIDAR (LIght Detection And Ranging) facility. This is the first time that LIDAR information is used to produce a physics result with Cherenkov Telescope data taken during adverse atmospheric conditions, and hence sets a precedent for the current and future ground-based gamma-ray instruments. The NuSTAR instrument provides unprecedented sensitivity in hard X-rays, showing the source to display a spectral energy distribution between 3 and 79 keV consistent with a log-parabolic spectrum and hard X-ray variability on hour timescales. None (of the four extended NuSTAR observations) shows evidence of the onset of inverse-Compton emission at hard X-ray energies. We apply a single-zone equilibrium synchrotron self-Compton model to five simultaneous broadband spectral energy distributions. We find that the synchrotron self-Compton model can reproduce the observed broadband states through a decrease in the magnetic field strength coinciding with an increase in the luminosity and hardness of the relativistic leptons responsible for the high-energy emission

    The COSPIX mission: focusing on the energetic and obscured Universe

    Full text link
    Tracing the formation and evolution of all supermassive black holes, including the obscured ones, understanding how black holes influence their surroundings and how matter behaves under extreme conditions, are recognized as key science objectives to be addressed by the next generation of instruments. These are the main goals of the COSPIX proposal, made to ESA in December 2010 in the context of its call for selection of the M3 mission. In addition, COSPIX, will also provide key measurements on the non thermal Universe, particularly in relation to the question of the acceleration of particles, as well as on many other fundamental questions as for example the energetic particle content of clusters of galaxies. COSPIX is proposed as an observatory operating from 0.3 to more than 100 keV. The payload features a single long focal length focusing telescope offering an effective area close to ten times larger than any scheduled focusing mission at 30 keV, an angular resolution better than 20 arcseconds in hard X-rays, and polarimetric capabilities within the same focal plane instrumentation. In this paper, we describe the science objectives of the mission, its baseline design, and its performances, as proposed to ESA.Comment: 7 pages, accepted for publication in Proceedings of Science, for the 25th Texas Symposium on Relativistic Astrophysics (eds. F. Rieger & C. van Eldik), PoS(Texas 2010)25

    The characterization of the distant blazar GB6 J1239+0443 from flaring and low activity periods

    Get PDF
    In 2008 AGILE and Fermi detected gamma-ray flaring activity from the unidentified EGRET source 3EG J1236+0457, recently associated with a flat spectrum radio quasar GB6 J1239+0443 at z=1.762. The optical counterpart of the gamma-ray source underwent a flux enhancement of a factor 15-30 in 6 years, and of ~10 in six months. We interpret this flare-up in terms of a transition from an accretion-disk dominated emission to a synchrotron-jet dominated one. We analysed a Sloan Digital Sky Survey (SDSS) archival optical spectrum taken during a period of low radio and optical activity of the source. We estimated the mass of the central black hole using the width of the CIV emission line. In our work, we have also investigated SDSS archival optical photometric data and UV GALEX observations to estimate the thermal-disk emission contribution of GB6 J1239+0443. Our analysis of the gamma-ray data taken during the flaring episodes indicates a flat gamma-ray spectrum, with an extension of up to 15 GeV, with no statistically-relevant sign of absorption from the broad line region, suggesting that the blazar-zone is located beyond the broad line region. This result is confirmed by the modeling of the broad-band spectral energy distribution (well constrained by the available multiwavelength data) of the flaring activity periods and by the accretion disk luminosity and black hole mass estimated by us using archival data.Comment: 30 pages, 7 figures, 4 tables MNRAS Accepted on 2012 June 1

    The structure and emission model of the relativistic jet in the quasar 3C 279 inferred from radio to high-energy gamma-ray observations in 2008-2010

    Get PDF
    We present time-resolved broad-band observations of the quasar 3C 279 obtained from multi-wavelength campaigns conducted during the first two years of the Fermi Gamma-ray Space Telescope mission. While investigating the previously reported gamma-ray/optical flare accompanied by a change in optical polarization, we found that the optical emission appears delayed with respect to the gamma-ray emission by about 10 days. X-ray observations reveal a pair of `isolated' flares separated by ~90 days, with only weak gamma-ray/optical counterparts. The spectral structure measured by Spitzer reveals a synchrotron component peaking in the mid-infrared band with a sharp break at the far-infrared band during the gamma-ray flare, while the peak appears in the mm/sub-mm band in the low state. Selected spectral energy distributions are fitted with leptonic models including Comptonization of external radiation produced in a dusty torus or the broad-line region. Adopting the interpretation of the polarization swing involving propagation of the emitting region along a curved trajectory, we can explain the evolution of the broad-band spectra during the gamma-ray flaring event by a shift of its location from ~ 1 pc to ~ 4 pc from the central black hole. On the other hand, if the gamma-ray flare is generated instead at sub-pc distance from the central black hole, the far-infrared break can be explained by synchrotron self-absorption. We also model the low spectral state, dominated by the mm/sub-mm peaking synchrotron component, and suggest that the corresponding inverse-Compton component explains the steady X-ray emission.Comment: 23 pages, 18 figures 5 tables, Accepted for publication in The Astrophysical Journa

    Magnetoluminescence

    Full text link
    Pulsar Wind Nebulae, Blazars, Gamma Ray Bursts and Magnetars all contain regions where the electromagnetic energy density greatly exceeds the plasma energy density. These sources exhibit dramatic flaring activity where the electromagnetic energy distributed over large volumes, appears to be converted efficiently into high energy particles and gamma-rays. We call this general process magnetoluminescence. Global requirements on the underlying, extreme particle acceleration processes are described and the likely importance of relativistic beaming in enhancing the observed radiation from a flare is emphasized. Recent research on fluid descriptions of unstable electromagnetic configurations are summarized and progress on the associated kinetic simulations that are needed to account for the acceleration and radiation is discussed. Future observational, simulation and experimental opportunities are briefly summarized.Comment: To appear in "Jets and Winds in Pulsar Wind Nebulae, Gamma-ray Bursts and Blazars: Physics of Extreme Energy Release" of the Space Science Reviews serie

    Fermi Gamma-ray Space Telescope Observations of Recent Gamma-ray Outbursts from 3C 454.3

    Full text link
    The flat spectrum radio quasar 3C~454.3 underwent an extraordinary outburst in December 2009 when it became the brightest gamma-ray source in the sky for over one week. Its daily flux measured with the Fermi Large Area Telescope at photon energies E>100 MeV reached F = 22+/-1 x 10^-6 ph cm^-2 s^-1, representing the highest daily flux of any blazar ever recorded in high-energy gamma-rays. It again became the brightest source in the sky in 2010 April, triggering a pointed-mode observation by Fermi. The correlated gamma-ray temporal and spectral properties during these exceptional events are presented and discussed. The main results show flux variability over time scales less than 3 h and very mild spectral variability with an indication of gradual hardening preceding major flares. No consistent loop pattern emerged in the gamma-ray spectral index vs flux plane. A minimum Doppler factor of ~ 15 is derived, and the maximum energy of a photon from 3C 454.3 is ~ 20 GeV. The spectral break at a few GeV is inconsistent with Klein-Nishina softening from power-law electrons scattering Ly_alpha line radiation, and a break in the underlying electron spectrum in blazar leptonic models is implied.Comment: submitted to the Astrophysical Journa

    A change in the optical polarization associated with a gamma-ray flare in the blazar 3C 279

    Get PDF
    It is widely accepted that strong and variable radiation detected over all accessible energy bands in a number of active galaxies arises from a relativistic, Doppler-boosted jet pointing close to our line of sight. The size of the emitting zone and the location of this region relative to the central supermassive black hole are, however, poorly known, with estimates ranging from light-hours to a light-year or more. Here we report the coincidence of a gamma-ray flare with a dramatic change of optical polarization angle. This provides evidence for co-spatiality of optical and gamma-ray emission regions and indicates a highly ordered jet magnetic field. The results also require a non-axisymmetric structure of the emission zone, implying a curved trajectory for the emitting material within the jet, with the dissipation region located at a considerable distance from the black hole, at about 10^5 gravitational radii.Comment: Published in Nature issued on 18 February 2010. Corresponding authors: Masaaki Hayashida and Greg Madejsk
    • 

    corecore