83 research outputs found

    Evidence That Descending Cortical Axons Are Essential for Thalamocortical Axons to Cross the Pallial-Subpallial Boundary in the Embryonic Forebrain

    Get PDF
    Developing thalamocortical axons traverse the subpallium to reach the cortex located in the pallium. We tested the hypothesis that descending corticofugal axons are important for guiding thalamocortical axons across the pallial-subpallial boundary, using conditional mutagenesis to assess the effects of blocking corticofugal axonal development without disrupting thalamus, subpallium or the pallial-subpallial boundary. We found that thalamic axons still traversed the subpallium in topographic order but did not cross the pallial-subpallial boundary. Co-culture experiments indicated that the inability of thalamic axons to cross the boundary was not explained by mutant cortex developing a long-range chemorepulsive action on thalamic axons. On the contrary, cortex from conditional mutants retained its thalamic axonal growth-promoting activity and continued to express Nrg-1, which is responsible for this stimulatory effect. When mutant cortex was replaced with control cortex, corticofugal efferents were restored and thalamic axons from conditional mutants associated with them and crossed the pallial-subpallial boundary. Our study provides the most compelling evidence to date that cortical efferents are required to guide thalamocortical axons across the pallial-subpallial boundary, which is otherwise hostile to thalamic axons. These results support the hypothesis that thalamic axons grow from subpallium to cortex guided by cortical efferents, with stimulation from diffusible cortical growth-promoting factors

    Mouse Embryonic Retina Delivers Information Controlling Cortical Neurogenesis

    Get PDF
    The relative contribution of extrinsic and intrinsic mechanisms to cortical development is an intensely debated issue and an outstanding question in neurobiology. Currently, the emerging view is that interplay between intrinsic genetic mechanisms and extrinsic information shape different stages of cortical development [1]. Yet, whereas the intrinsic program of early neocortical developmental events has been at least in part decoded [2], the exact nature and impact of extrinsic signaling are still elusive and controversial. We found that in the mouse developing visual system, acute pharmacological inhibition of spontaneous retinal activity (retinal waves-RWs) during embryonic stages increase the rate of corticogenesis (cell cycle withdrawal). Furthermore, early perturbation of retinal spontaneous activity leads to changes of cortical layer structure at a later time point. These data suggest that mouse embryonic retina delivers long-distance information capable of modulating cell genesis in the developing visual cortex and that spontaneous activity is the candidate long-distance acting extrinsic cue mediating this process. In addition, these data may support spontaneous activity to be a general signal coordinating neurogenesis in other developing sensory pathways or areas of the central nervous system

    Language impairment in a case of a complex chromosomal rearrangement with a breakpoint downstream of FOXP2

    Get PDF
    BACKGROUND: We report on a young female, who presents with a severe speech and language disorder and a balanced de novo complex chromosomal rearrangement, likely to have resulted from a chromosome 7 pericentromeric inversion, followed by a chromosome 7 and 11 translocation. RESULTS: Using molecular cytogenetics, we mapped the four breakpoints to 7p21.1-15.3 (chromosome position: 20,954,043-21,001,537, hg19), 7q31 (chromosome position: 114,528,369-114,556,605, hg19), 7q21.3 (chromosome position: 93,884,065-93,933,453, hg19) and 11p12 (chromosome position: 38,601,145-38,621,572, hg19). These regions contain only non-coding transcripts (ENSG00000232790 on 7p21.1 and TCONS_00013886, TCONS_00013887, TCONS_00014353, TCONS_00013888 on 7q21) indicating that no coding sequences are directly disrupted. The breakpoint on 7q31 mapped 200 kb downstream of FOXP2, a well-known language gene. No splice site or non-synonymous coding variants were found in the FOXP2 coding sequence. We were unable to detect any changes in the expression level of FOXP2 in fibroblast cells derived from the proband, although this may be the result of the low expression level of FOXP2 in these cells. CONCLUSIONS: We conclude that the phenotype observed in this patient either arises from a subtle change in FOXP2 regulation due to the disruption of a downstream element controlling its expression, or from the direct disruption of non-coding RNAs

    Pax6 is required intrinsically by thalamic progenitors for the normal molecular patterning of thalamic neurons but not the growth and guidance of their axons

    Get PDF
    BACKGROUND: In mouse embryos, the Pax6 transcription factor is expressed in the progenitors of thalamic neurons but not in thalamic neurons themselves. Its null-mutation causes early mis-patterning of thalamic progenitors. It is known that thalamic neurons generated by Pax6(−/−) progenitors do not develop their normal connections with the cortex, but it is not clear why. We investigated the extent to which defects intrinsic to the thalamus are responsible. RESULTS: We first confirmed that, in constitutive Pax6(−/−) mutants, the axons of thalamic neurons fail to enter the telencephalon and, instead, many of them take an abnormal path to the hypothalamus, whose expression of Slits would normally repel them. We found that thalamic neurons show reduced expression of the Slit receptor Robo2 in Pax6(−/−) mutants, which might enhance the ability of their axons to enter the hypothalamus. Remarkably, however, in chimeras comprising a mixture of Pax6(−/−) and Pax6(+/+) cells, Pax6(−/−) thalamic neurons are able to generate axons that exit the diencephalon, take normal trajectories through the telencephalon and avoid the hypothalamus. This occurs despite abnormalities in their molecular patterning (they express Nkx2.2, unlike normal thalamic neurons) and their reduced expression of Robo2. In conditional mutants, acute deletion of Pax6 from the forebrain at the time when thalamic axons are starting to grow does not prevent the development of the thalamocortical tract, suggesting that earlier extra-thalamic patterning and /or morphological defects are the main cause of thalamocortical tract failure in Pax6(−/−) constitutive mutants. CONCLUSIONS: Our results indicate that Pax6 is required by thalamic progenitors for the normal molecular patterning of the thalamic neurons that they generate but thalamic neurons do not need normal Pax6-dependent patterning to become competent to grow axons that can be guided appropriately

    Deficient NRG1-ERBB signaling alters social approach: relevance to genetic mouse models of schizophrenia

    Get PDF
    Growth factor Neuregulin 1 (NRG1) plays an essential role in development and organization of the cerebral cortex. NRG1 and its receptors, ERBB3 and ERBB4, have been implicated in genetic susceptibility for schizophrenia. Disease symptoms include asociality and altered social interaction. To investigate the role of NRG1-ERBB signaling in social behavior, mice heterozygous for an Nrg1 null allele (Nrg1+/−), and mice with conditional ablation of Erbb3 or Erbb4 in the central nervous system, were evaluated for sociability and social novelty preference in a three-chambered choice task. Results showed that deficiencies in NRG1 or ERBB3 significantly enhanced sociability. All of the mutant groups demonstrated a lack of social novelty preference, in contrast to their respective wild-type controls. Effects of NRG1, ERBB3, or ERBB4 deficiency on social behavior could not be attributed to general changes in anxiety-like behavior, activity, or loss of olfactory ability. Nrg1+/− pups did not exhibit changes in isolation-induced ultrasonic vocalizations, a measure of emotional reactivity. Overall, these findings provide evidence that social behavior is mediated by NRG1-ERBB signaling

    The expression and activity of β-catenin in the thalamus and its projections to the cerebral cortex in the mouse embryo

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The mammalian thalamus relays sensory information from the periphery to the cerebral cortex for cognitive processing via the thalamocortical tract. The thalamocortical tract forms during embryonic development controlled by mechanisms that are not fully understood. β-catenin is a nuclear and cytosolic protein that transduces signals from secreted signaling molecules to regulate both cell motility via the cytoskeleton and gene expression in the nucleus. In this study we tested whether β-catenin is likely to play a role in thalamocortical connectivity by examining its expression and activity in developing thalamic neurons and their axons.</p> <p>Results</p> <p>At embryonic day (E)15.5, the time when thalamocortical axonal projections are forming, we found that the thalamus is a site of particularly high β-catenin mRNA and protein expression. As well as being expressed at high levels in thalamic cell bodies, β-catenin protein is enriched in the axons and growth cones of thalamic axons and its growth cone concentration is sensitive to Netrin-1. Using mice carrying the β-catenin reporter <it>BAT-gal </it>we find high levels of reporter activity in the thalamus. Further, Netrin-1 induces <it>BAT-gal </it>reporter expression and upregulates levels of endogenous transcripts encoding β-actin and L1 proteins in cultured thalamic cells. We found that β-catenin mRNA is enriched in thalamic axons and its 3'UTR is phylogenetically conserved and is able to direct heterologous mRNAs along the thalamic axon, where they can be translated.</p> <p>Conclusion</p> <p>We provide evidence that β-catenin protein is likely to be an important player in thalamocortcial development. It is abundant both in the nucleus and in the growth cones of post-mitotic thalamic cells during the development of thalamocortical connectivity and β-catenin mRNA is targeted to thalamic axons and growth cones where it could potentially be translated. β-catenin is involved in transducing the Netrin-1 signal to thalamic cells suggesting a mechanism by which Netrin-1 guides thalamocortical development.</p

    Differential Cerebral Cortex Transcriptomes of Baboon Neonates Consuming Moderate and High Docosahexaenoic Acid Formulas

    Get PDF
    BACKGROUND: Docosahexaenoic acid (DHA, 22:6n-3) and arachidonic acid (ARA, 20:4n-6) are the major long chain polyunsaturated fatty acids (LCPUFA) of the central nervous system (CNS). These nutrients are present in most infant formulas at modest levels, intended to support visual and neural development. There are no investigations in primates of the biological consequences of dietary DHA at levels above those present in formulas but within normal breastmilk levels. METHODS AND FINDINGS: Twelve baboons were divided into three formula groups: Control, with no DHA-ARA; “L”, LCPUFA, with 0.33%DHA-0.67%ARA; “L3”, LCPUFA, with 1.00%DHA-0.67%ARA. All the samples are from the precentral gyrus of cerebral cortex brain regions. At 12 weeks of age, changes in gene expression were detected in 1,108 of 54,000 probe sets (2.05%), with most showing <2-fold change. Gene ontology analysis assigns them to diverse biological functions, notably lipid metabolism and transport, G-protein and signal transduction, development, visual perception, cytoskeleton, peptidases, stress response, transcription regulation, and 400 transcripts having no defined function. PLA2G6, a phospholipase recently associated with infantile neuroaxonal dystrophy, was downregulated in both LCPUFA groups. ELOVL5, a PUFA elongase, was the only LCPUFA biosynthetic enzyme that was differentially expressed. Mitochondrial fatty acid carrier, CPT2, was among several genes associated with mitochondrial fatty acid oxidation to be downregulated by high DHA, while the mitochondrial proton carrier, UCP2, was upregulated. TIMM8A, also known as deafness/dystonia peptide 1, was among several differentially expressed neural development genes. LUM and TIMP3, associated with corneal structure and age-related macular degeneration, respectively, were among visual perception genes influenced by LCPUFA. TIA1, a silencer of COX2 gene translation, is upregulated by high DHA. Ingenuity pathway analysis identified a highly significant nervous system network, with epidermal growth factor receptor (EGFR) as the outstanding interaction partner. CONCLUSIONS: These data indicate that LCPUFA concentrations within the normal range of human breastmilk induce global changes in gene expression across a wide array of processes, in addition to changes in visual and neural function normally associated with formula LCPUFA

    Neck muscle afferents influence oromotor and cardiorespiratory brainstem neural circuits

    Get PDF
    Sensory information arising from the upper neck is important in the reflex control of posture and eye position. It has also been linked to the autonomic control of the cardiovascular and respiratory systems. Whiplash associated disorders (WAD) and cervical dystonia, which involve disturbance to the neck region, can often present with abnormalities to the oromotor, respiratory and cardiovascular systems. We investigated the potential neural pathways underlying such symptoms. Simulating neck afferent activity by electrical stimulation of the second cervical nerve in a working heart brainstem preparation (WHBP) altered the pattern of central respiratory drive and increased perfusion pressure. Tracing central targets of these sensory afferents revealed projections to the intermedius nucleus of the medulla (InM). These anterogradely labelled afferents co-localised with parvalbumin and vesicular glutamate transporter 1 indicating that they are proprioceptive. Anterograde tracing from the InM identified projections to brain regions involved in respiratory, cardiovascular, postural and oro-facial behaviours-the neighbouring hypoglossal nucleus, facial and motor trigeminal nuclei, parabrachial nuclei, rostral and caudal ventrolateral medulla and nucleus ambiguus. In brain slices, electrical stimulation of afferent fibre tracts lateral to the cuneate nucleus monosynaptically excited InM neurones. Direct stimulation of the InM in the WHBP mimicked the response of second cervical nerve stimulation. These results provide evidence of pathways linking upper cervical sensory afferents with CNS areas involved in autonomic and oromotor control, via the InM. Disruption of these neuronal pathways could, therefore, explain the dysphagic and cardiorespiratory abnormalities which may accompany cervical dystonia and WAD
    corecore