39 research outputs found

    Toward 959 nematode genomes

    Get PDF
    The sequencing of the complete genome of the nematode Caenorhabditis elegans was a landmark achievement and ushered in a new era of whole-organism, systems analyses of the biology of this powerful model organism. The success of the C. elegans genome sequencing project also inspired communities working on other organisms to approach genome sequencing of their species. The phylum Nematoda is rich and diverse and of interest to a wide range of research fields from basic biology through ecology and parasitic disease. For all these communities, it is now clear that access to genome scale data will be key to advancing understanding, and in the case of parasites, developing new ways to control or cure diseases. The advent of second-generation sequencing technologies, improvements in computing algorithms and infrastructure and growth in bioinformatics and genomics literacy is making the addition of genome sequencing to the research goals of any nematode research program a less daunting prospect. To inspire, promote and coordinate genomic sequencing across the diversity of the phylum, we have launched a community wiki and the 959 Nematode Genomes initiative (www.nematodegenomes.org/). Just as the deciphering of the developmental lineage of the 959 cells of the adult hermaphrodite C. elegans was the gateway to broad advances in biomedical science, we hope that a nematode phylogeny with (at least) 959 sequenced species will underpin further advances in understanding the origins of parasitism, the dynamics of genomic change and the adaptations that have made Nematoda one of the most successful animal phyla

    Targeted transcriptomics reveals signatures of large-scale independent origins and concerted regulation of effector genes in Radopholus similis.

    Get PDF
    The burrowing nematode, Radopholus similis, is an economically important plant-parasitic nematode that inflicts damage and yield loss to a wide range of crops. This migratory endoparasite is widely distributed in warmer regions and causes extensive destruction to the root systems of important food crops (e.g., citrus, banana). Despite the economic importance of this nematode, little is known about the repertoire of effectors owned by this species. Here we combined spatially and temporally resolved next-generation sequencing datasets of R. similis to select a list of candidates for the identification of effector genes for this species. We confirmed spatial expression of transcripts of 30 new candidate effectors within the esophageal glands of R. similis by in situ hybridization, revealing a large number of pioneer genes specific to this nematode. We identify a gland promoter motif specifically associated with the subventral glands (named Rs-SUG box), a putative hallmark of spatial and concerted regulation of these effectors. Nematode transcriptome analyses confirmed the expression of these effectors during the interaction with the host, with a large number of pioneer genes being especially abundant. Our data revealed that R. similis holds a diverse and emergent repertoire of effectors, which has been shaped by various evolutionary events, including neofunctionalization, horizontal gene transfer, and possibly by de novo gene birth. In addition, we also report the first GH62 gene so far discovered for any metazoan and putatively acquired by lateral gene transfer from a bacterial donor. Considering the economic damage caused by R. similis, this information provides valuable data to elucidate the mode of parasitism of this nematode

    iPhy: an integrated phylogenetic workbench for supermatrix analyses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The increasing availability of molecular sequence data means that the accuracy of future phylogenetic studies is likely to by limited by systematic bias and taxon choice rather than by data. In order to take advantage of increasing datasets, user-friendly tools are required to facilitate phylogenetic analyses and to reduce duplication of dataset assembly efforts. Current phylogenetic pipelines are dependency-heavy and have significant technical barriers to use.</p> <p>Results</p> <p>Here we present iPhy, a web application that lets non-technical users assemble, share and analyse DNA sequence datasets for multigene phylogenetic investigations. Built on a simple client-server architecture, iPhy eases the collection of gene sets for analysis, facilitates alignment and reliably generates phylogenetic analysis-ready data files. Phylogenetic trees generated in external programs can be imported and stored, and iPhy integrates with iTol to allow trees to be displayed with rich data annotation. The datasets collated in iPhy can be shared through the client interface. We show how systematic biases can be addressed by using explicit criteria when selecting sequences for analysis from a large dataset. A representative instance of iPhy can be accessed at iphy.bio.ed.ac.uk, but the toolkit can also be deployed on a local server for advanced users.</p> <p>Conclusions</p> <p>iPhy provides an easy-to-use environment for the assembly, analysis and sharing of large phylogenetic datasets, while encouraging best practices in terms of phylogenetic analysis and taxon selection.</p

    The genome of the yellow potato cyst nematode, Globodera rostochiensis, reveals insights into the basis of parasitism and virulence

    Get PDF
    BACKGROUND: The yellow potato cyst nematode, Globodera rostochiensis, is a devastating plant pathogen of global economic importance. This biotrophic parasite secretes effectors from pharyngeal glands, some of which were acquired by horizontal gene transfer, to manipulate host processes and promote parasitism. G. rostochiensis is classified into pathotypes with different plant resistance-breaking phenotypes. RESULTS: We generate a high quality genome assembly for G. rostochiensis pathotype Ro1, identify putative effectors and horizontal gene transfer events, map gene expression through the life cycle focusing on key parasitic transitions and sequence the genomes of eight populations including four additional pathotypes to identify variation. Horizontal gene transfer contributes 3.5 % of the predicted genes, of which approximately 8.5 % are deployed as effectors. Over one-third of all effector genes are clustered in 21 putative ‘effector islands’ in the genome. We identify a dorsal gland promoter element motif (termed DOG Box) present upstream in representatives from 26 out of 28 dorsal gland effector families, and predict a putative effector superset associated with this motif. We validate gland cell expression in two novel genes by in situ hybridisation and catalogue dorsal gland promoter element-containing effectors from available cyst nematode genomes. Comparison of effector diversity between pathotypes highlights correlation with plant resistance-breaking. CONCLUSIONS: These G. rostochiensis genome resources will facilitate major advances in understanding nematode plant-parasitism. Dorsal gland promoter element-containing effectors are at the front line of the evolutionary arms race between plant and parasite and the ability to predict gland cell expression a priori promises rapid advances in understanding their roles and mechanisms of action.SE-vdA is supported by BBSRC grant BB/M014207/1. Sequencing was funded by BBSRC grant BB/F000642/1 to the University of Leeds and grant BB/F00334X/1 to the Wellcome Trust Sanger Institute). DRL was supported by a fellowship from The James Hutton Institute and the School of Biological Sciences, University of Edinburgh. GK was supported by a BBSRC PhD studentship. The James Hutton Institute receives funding from the Scottish Government. JAC and NEH are supported by the Wellcome Trust through its core funding of the Wellcome Trust Sanger Institute (grant 098051). This work was also supported by funding from the Canadian Safety and Security Program, project number CRTI09_462RD

    Comparative genomics of the major parasitic worms

    Get PDF
    Parasitic nematodes (roundworms) and platyhelminths (flatworms) cause debilitating chronic infections of humans and animals, decimate crop production and are a major impediment to socioeconomic development. Here we report a broad comparative study of 81 genomes of parasitic and non-parasitic worms. We have identified gene family births and hundreds of expanded gene families at key nodes in the phylogeny that are relevant to parasitism. Examples include gene families that modulate host immune responses, enable parasite migration though host tissues or allow the parasite to feed. We reveal extensive lineage-specific differences in core metabolism and protein families historically targeted for drug development. From an in silico screen, we have identified and prioritized new potential drug targets and compounds for testing. This comparative genomics resource provides a much-needed boost for the research community to understand and combat parasitic worms

    Comparative genomics of the tardigrades <i>Hypsibius dujardini</i> and <i>Ramazzottius varieornatus</i>

    Get PDF
    Tardigrada, a phylum of meiofaunal organisms, have been at the center of discussions of the evolution of Metazoa, the biology of survival in extreme environments, and the role of horizontal gene transfer in animal evolution. Tardigrada are placed as sisters to Arthropoda and Onychophora (velvet worms) in the superphylum Panarthropoda by morphological analyses, but many molecular phylogenies fail to recover this relationship. This tension between molecular and morphological understanding may be very revealing of the mode and patterns of evolution of major groups. Limnoterrestrial tardigrades display extreme cryptobiotic abilities, including anhydrobiosis and cryobiosis, as do bdelloid rotifers, nematodes, and other animals of the water film. These extremophile behaviors challenge understanding of normal, aqueous physiology: how does a multicellular organism avoid lethal cellular collapse in the absence of liquid water? Meiofaunal species have been reported to have elevated levels of horizontal gene transfer (HGT) events, but how important this is in evolution, and particularly in the evolution of extremophile physiology, is unclear. To address these questions, we resequenced and reassembled the genome of H. dujardini, a limnoterrestrial tardigrade that can undergo anhydrobiosis only after extensive pre-exposure to drying conditions, and compared it to the genome of R. varieornatus, a related species with tolerance to rapid desiccation. The 2 species had contrasting gene expression responses to anhydrobiosis, with major transcriptional change in H. dujardini but limited regulation in R. varieornatus. We identified few horizontally transferred genes, but some of these were shown to be involved in entry into anhydrobiosis. Whole-genome molecular phylogenies supported a Tardigrada+Nematoda relationship over Tardigrada+Arthropoda, but rare genomic changes tended to support Tardigrada+Arthropoda

    Palaeosymbiosis Revealed by Genomic Fossils of Wolbachia in a Strongyloidean Nematode

    Get PDF
    Wolbachia are common endosymbionts of terrestrial arthropods, and are also found in nematodes: the animal-parasitic filaria, and the plant-parasite Radopholus similis. Lateral transfer of Wolbachia DNA to the host genome is common. We generated a draft genome sequence for the strongyloidean nematode parasite Dictyocaulus viviparus, the cattle lungworm. In the assembly, we identified nearly 1 Mb of sequence with similarity to Wolbachia. The fragments were unlikely to derive from a live Wolbachia infection: most were short, and the genes were disabled through inactivating mutations. Many fragments were co-assembled with definitively nematode-derived sequence. We found limited evidence of expression of the Wolbachia-derived genes. The D. viviparus Wolbachia genes were most similar to filarial strains and strains from the host promiscuous clade F. We conclude that D. viviparus was infected by Wolbachia in the past, and that clade F-like symbionts may have been the source of filarial Wolbachia infections

    AvP: A software package for automatic phylogenetic detection of candidate horizontal gene transfers.

    No full text
    Horizontal gene transfer (HGT) is the transfer of genes between species outside the transmission from parent to offspring. Due to their impact on the genome and biology of various species, HGTs have gained broader attention, but high-throughput methods to robustly identify them are lacking. One rapid method to identify HGT candidates is to calculate the difference in similarity between the most similar gene in closely related species and the most similar gene in distantly related species. Although metrics on similarity associated with taxonomic information can rapidly detect putative HGTs, these methods are hampered by false positives that are difficult to track. Furthermore, they do not inform on the evolutionary trajectory and events such as duplications. Hence, phylogenetic analysis is necessary to confirm HGT candidates and provide a more comprehensive view of their origin and evolutionary history. However, phylogenetic reconstruction requires several time-consuming manual steps to retrieve the homologous sequences, produce a multiple alignment, construct the phylogeny and analyze the topology to assess whether it supports the HGT hypothesis. Here, we present AvP which automatically performs all these steps and detects candidate HGTs within a phylogenetic framework
    corecore