235 research outputs found

    A Hybrid Algorithm for Missing Data Imputation and Its Application to Electrical Data Loggers

    Get PDF
    The storage of data is a key process in the study of electrical power networks related to the search for harmonics and the finding of a lack of balance among phases. The presence of missing data of any of the main electrical variables (phase-to-neutral voltage, phase-to-phase voltage, current in each phase and power factor) affects any time series study in a negative way that has to be addressed. When this occurs, missing data imputation algorithms are required. These algorithms are able to substitute the data that are missing for estimated values. This research presents a new algorithm for the missing data imputation method based on Self-Organized Maps Neural Networks and Mahalanobis distances and compares it not only with a well-known technique called Multivariate Imputation by Chained Equations (MICE) but also with an algorithm previously proposed by the authors called Adaptive Assignation Algorithm (AAA). The results obtained demonstrate how the proposed method outperforms both algorithms.Ministerio de Economía y Competitividad, AYA2014-57648-PAsturias (Comunidad Autónoma). Consejería de Economía y Empleo, FC-15-GRUPIN14-01

    A PHABULOSA/cytokinin feedback loop controls root growth in arabidopsis

    Get PDF
    The hormone cytokinin (CK) controls root length in Arabidopsis thaliana by defining where dividing cells, derived from stem cells of the root meristem, start to differentiate [ [1], [2], [3], [4], [5] and [6]]. However, the regulatory inputs directing CK to promote differentiation remain poorly understood. Here, we show that the HD-ZIPIII transcription factor PHABULOSA (PHB) directly activates the CK biosynthesis gene ISOPENTENYL TRANSFERASE 7 (IPT7), thus promoting cell differentiation and regulating root length. We further demonstrate that CK feeds back to repress both PHB and microRNA165, a negative regulator of PHB. These interactions comprise an incoherent regulatory loop in which CK represses both its activator and a repressor of its activator. We propose that this regulatory circuit determines the balance of cell division and differentiation during root development and may provide robustness against CK fluctuations

    Noncoding RNA Mediated Traffic of Foreign mRNA into Chloroplasts Reveals a Novel Signaling Mechanism in Plants

    Get PDF
    Communication between chloroplasts and the nucleus is one of the milestones of the evolution of plants on earth. Proteins encoded by ancestral chloroplast-endogenous genes were transferred to the nucleus during the endosymbiotic evolution and originated this communication, which is mainly dependent on specific transit-peptides. However, the identification of nuclear-encoded proteins targeted to the chloroplast lacking these canonical signals suggests the existence of an alternative cellular pathway tuning this metabolic crosstalk. Non-coding RNAS (NcRNAs) are increasingly recognized as regulators of gene expression as they play roles previously believed to correspond to proteins. Avsunviroidae family viroids are the only noncoding functional RNAs that have been reported to traffic inside the chloroplasts. Elucidating mechanisms used by these pathogens to enter this organelle will unearth novel transport pathways in plant cells. Here we show that a viroid-derived NcRNA acting as a 5′UTR-end mediates the functional import of Green Fluorescent Protein (GFP) mRNA into chloroplast. This claim is supported by the observation at confocal microscopy of a selective accumulation of GFP in the chloroplast of the leaves expressing the chimeric vd-5′UTR/GFP and by the detection of the GFP mRNA in chloroplasts isolated from cells expressing this construct. These results support the existence of an alternative signaling mechanism in plants between the host cell and chloroplasts, where an ncRNA functions as a key regulatory molecule to control the accumulation of nuclear-encoded proteins in this organelle. In addition, our findings provide a conceptual framework to develop new biotechnological tools in systems using plant chloroplast as bioreactors. Finally, viroids of the family Avsunviroidae have probably evolved to subvert this signaling mechanism to regulate their differential traffic into the chloroplast of infected cells

    Carbon budgets of Scotia Sea mesopelagic zooplankton and micronekton communities during austral spring

    Get PDF
    This is the final version. Available on open access from Elsevier via the DOI in this recordData availability: Macrozooplankton and nekton vertical distribution and abundance at the sustained observation location P3 in the northern Scotia Sea (Southern Ocean) during November and December 2017 https://doi.org/10.5285/e184e81a-e43c-424e-abec-122036ee2cfd. Micronekton and zooplankton respiration rates on COMICS Cruises DY086 and DY090 https://doi.org/10.5285/b9f5c5ec-100a-7ff0-e053-6c86abc0f494. All other data is available on request.Zooplankton form an integral component of epi- and mesopelagic ecosystems, and there is a need to better understand their role in ocean biogeochemistry. The export and remineralisation of particulate organic matter at depth plays an important role in controlling atmospheric CO2 concentrations. Pelagic mesozooplankton and micronekton communities may influence the fate of organic matter in a number of ways, including: the consumption of primary producers and export of this material as fast-sinking faecal pellets, and the active flux of carbon by animals undertaking diel vertical migration (DVM) into the mesopelagic. We present day and night vertical biomass profiles of mesozooplankton and micronekton communities in the upper 500 m during three visits to an ocean observatory station (P3) to the NW of South Georgia (Scotia Sea, South Atlantic) in austral spring, alongside estimates of their daily rates of ingestion and respiration throughout the water column. Day and night community biomass estimates were dominated by copepods >330 μm, including the lipid-rich species, Calanoides acutus and Rhincalanus gigas. We found little evidence of synchronised DVM, with only Metridia spp. and Salpa thompsoni showing patterns consistent with migratory behaviour. At depths below 250 m, estimated community carbon ingestion rates exceeded those of metabolic costs, supporting the understanding that food quality in the mesopelagic is relatively poor, and organisms have to consume a large amount of food in order to fulfil their nutritional requirements. By contrast, estimated community rates of ingestion and metabolic costs at shallower depths were approximately balanced, but only when we assumed that the animals were predominantly catabolising lipids (i.e. respiratory quotient = 0.7) and had relatively high absorption efficiencies. Our work demonstrates that it is possible to balance the metabolic budgets of mesopelagic animals to within observational uncertainties, but highlights the need for a better understanding of the physiology of lipid-storing animals and how it influences carbon budgeting in the pelagic.Natural Environment Research Council (NERC

    The HY5-PIF regulatory module coordinates light and temperature control of photosynthetic gene transcription

    Get PDF
    The ability to interpret daily and seasonal alterations in light and temperature signals is essential for plant survival. This is particularly important during seedling establishment when the phytochrome photoreceptors activate photosynthetic pigment production for photoautotrophic growth. Phytochromes accomplish this partly through the suppression of phytochrome interacting factors (PIFs), negative regulators of chlorophyll and carotenoid biosynthesis. While the bZIP transcription factor long hypocotyl 5 (HY5), a potent PIF antagonist, promotes photosynthetic pigment accumulation in response to light. Here we demonstrate that by directly targeting a common promoter cis-element (G-box), HY5 and PIFs form a dynamic activation-suppression transcriptional module responsive to light and temperature cues. This antagonistic regulatory module provides a simple, direct mechanism through which environmental change can redirect transcriptional control of genes required for photosynthesis and photoprotection. In the regulation of photopigment biosynthesis genes, HY5 and PIFs do not operate alone, but with the circadian clock. However, sudden changes in light or temperature conditions can trigger changes in HY5 and PIFs abundance that adjust the expression of common target genes to optimise photosynthetic performance and growth

    A frameshift mutation of the chloroplast matK coding region is associated with chlorophyll deficiency in the Cryptomeria japonica virescent mutant Wogon-Sugi

    Get PDF
    Wogon-Sugi has been reported as a cytoplasmically inherited virescent mutant selected from a horticultural variety of Cryptomeria japonica. Although previous studies of plastid structure and inheritance indicated that at least some mutations are encoded by the chloroplast genome, the causative gene responsible for the primary chlorophyll deficiency in Wogon-Sugi, has not been identified. In this study, we identified this gene by genomic sequencing of chloroplast DNA and genetic analysis. Chloroplast DNA sequencing of 16 wild-type and 16 Wogon-Sugi plants showed a 19-bp insertional sequence in the matK coding region in the Wogon-Sugi. This insertion disrupted the matK reading frame. Although an indel mutation in the ycf1 and ycf2 coding region was detected in Wogon-Sugi, sequence variations similar to that of Wogon-Sugi were also detected in several wild-type lines, and they maintained the reading frame. Genetic analysis of the 19 bp insertional mutation in the matK coding region showed that it was found only in the chlorophyll-deficient sector of 125 full-sibling seedlings. Therefore, the 19-bp insertion in the matK coding region is the most likely candidate at present for a mutation underlying the Wogon-Sugi phenotype

    The Stromal Processing Peptidase of Chloroplasts is Essential in Arabidopsis, with Knockout Mutations Causing Embryo Arrest after the 16-Cell Stage

    Get PDF
    Stromal processing peptidase (SPP) is a metalloendopeptidase located in the stroma of chloroplasts, and it is responsible for the cleavage of transit peptides from preproteins upon their import into the organelle. Two independent mutant Arabidopsis lines with T-DNA insertions in the SPP gene were analysed (spp-1 and spp-2). For both lines, no homozygous mutant plants could be detected, and the segregating progeny of spp heterozygotes contained heterozygous and wild-type plants in a ratio of 2∶1. The siliques of heterozygous spp-1 and spp-2 plants contained many aborted seeds, at a frequency of ∼25%, suggesting embryo lethality. By contrast, transmission of the spp mutations through the male and female gametes was found to be normal, and so gametophytic effects could be ruled out. To further elucidate the timing of the developmental arrest, mutant and wild-type seeds were cleared and analysed by Nomarski microscopy. A significant proportion (∼25%) of the seeds in mutant siliques exhibited delayed embryogenesis compared to those in wild type. Moreover, the mutant embryos never progressed normally beyond the 16-cell stage, with cell divisions not completing properly thereafter. Heterozygous spp mutant plants were phenotypically indistinguishable from the wild type, indicating that the spp knockout mutations are completely recessive and suggesting that one copy of the SPP gene is able to produce sufficient SPP protein for normal development under standard growth conditions

    New insights on subsurface energy resources in the Southern North Sea Basin area

    Get PDF
    The Southern North Sea Basin area, stretching from the UK to the Netherlands, has a rich hydrocarbon exploration and production history. The past, present and expected future hydrocarbon and geothermal exploration trends in this area are discussed for eight key lithostratigraphic intervals, ranging from the Lower Carboniferous to Cenozoic. In the period between 2007 and 2017, a total of 95 new hydrocarbon fields were discovered, particularly in Upper Carboniferous, Rotliegend and Triassic reservoirs. Nineteen geothermal systems were discovered in the Netherlands onshore, mainly targeting aquifers in the Rotliegend and Upper Jurassic/Lower Cretaceous formations. Although the Southern North Sea Basin area is mature in terms of hydrocarbon exploration, it is shown that with existing and new geological insights, additional energy resources are still being proven in new plays such as the basal Upper Rotliegend (Ruby discovery) for natural gas and a new Chalk play for oil. It is predicted that hydrocarbon exploration in the Southern North Sea Basin area will probably experience a slight growth in the coming decade before slowing down, as the energy transition further matures. Geothermal exploration is expected to continue growing in the Netherlands onshore as well as gain more momentum in the UK
    corecore