464 research outputs found

    Spallation Residues in the Reaction 56Fe + p at 0.3, 0.5, 0.75, 1.0 and 1.5 A GeV

    Get PDF
    The spallation residues produced in the bombardment of 56}Fe at 1.5, 1.0, 0.75, 0.5 and 0.3 A GeV on a liquid-hydrogen target have been measured using the reverse kinematics technique and the Fragment Separator at GSI (Darmstadt). This technique has permitted the full identification in charge and mass of all isotopes produced with cross-sections larger than 10^{-2} mb down to Z=8. Their individual production cross-sections and recoil velocities at the five energies are presented. Production cross-sections are compared to previously existing data and to empirical parametric formulas, often used in cosmic-ray astrophysics. The experimental data are also extensively compared to different combinations of intra-nuclear cascade and de-excitation models. It is shown that the yields of the lightest isotopes cannot be accounted for by standard evaporation models. The GEMINI model, which includes an asymmetric fission decay mode, gives an overall good agreement with the data. These experimental data can be directly used for the estimation of composition modifications and damages in materials containing iron in spallation sources. They are also useful for improving high precision cosmic-ray measurements.Comment: Submited to Phys. Rev. C (10/2006

    Approaches to assess IgE mediated allergy risks (sensitization and cross-reactivity) from new or modified dietary proteins

    Get PDF
    The development and introduction of new dietary protein sources has the potential to improve food supply sustainability. Understanding the potential allergenicity of these new or modified proteins is crucial to ensure protection of public health. Exposure to new proteins may result in de novo sensitization, with or without clinical allergy, or clinical reactions through cross-reactivity. In this paper we review the potential of current methodologies (in silico, in vitro degradation, in vitro IgE binding, animal models and clinical studies) to address these outcomes for risk assessment purposes for new proteins, and especially to identify and characterise the risk of sensitization for IgE mediated allergy from oral exposure. Existing tools and tests are capable of assessing potential crossreactivity. However, there are few possibilities to assess the hazard due to de novo sensitization. The only methods available are in vivo models, but many limitations exist to use them for assessing risk. We conclude that there is a need to understand which criteria adequately define allergenicity for risk assessment purposes, and from these criteria develop a more suitable battery of tests to distinguish between proteins of high and low allergenicity, which can then be applied to assess new proteins with unknown risks. © 2017 The Authors Chemicals/CAS: immunoglobulin E, 37341-29-

    Construction and test of a fine-grained liquid argon preshower prototype

    Get PDF
    A separate liquid argon preshower detector consisting of two layers featuring a fine granularity of 2.5~103^{\mathrm{-3}} was studied by the RD3 collaboration. A prototype covering approximately 0.8 in pseudo-rapidity and 9 degrees in azimuth was built and tested at CERN in July 94. CMOS and GaAs VLSI preamplifiers were designed and tested for this occasion. The combined response of this detector and an accordion electromagnetic calorimeter prototype to muons, electrons and photons is presented. For minimum ionizing tracks a signal-to-noise ratio of 4.5 per preshower layer was measured. Above 150~GeV the space resolution for electrons is better than 250~μ\mum in both directions. The precision on the electromagnetic shower direction, determined together with the calorimeter, is better than 4 mrad above 50~GeV. It is concluded that the preshower detector would adequately fulfil its role for future operation at CERN Large Hadron Collider

    Performance of an endcap prototype of the Atlas accordion electromagnetic calorimeter

    Get PDF
    The design and construction of a lead-liquid argon endcap calorimeter prototype using an accordion geometry and conceived as a sector of the inner wheel of the endcap calorimeter of the future ATLAS experiment at the LHC is described. The performance obtained using electron beam data is presented. The main results are an energy resolution with a sampling term below 11%/E(GeV)11\%/\sqrt{E(\rm GeV)} and a small local constant term, a good linearity of the response with the incident energy and a global constant term of 0.8\% over an extended area in the rapidity range of 2.2η2.92.2\eta 2.9. These properties make the design suitable for the ATLAS electromagnetic endcap calorimeter

    Relationship of weather types on the seasonal and spatial variability of rainfall, runoff, and sediment yield in the western Mediterranean basin

    Get PDF
    Rainfall is the key factor to understand soil erosion processes, mechanisms, and rates. Most research was conducted to determine rainfall characteristics and their relationship with soil erosion (erosivity) but there is little information about how atmospheric patterns control soil losses, and this is important to enable sustainable environmental planning and risk prevention. We investigated the temporal and spatial variability of the relationships of rainfall, runoff, and sediment yield with atmospheric patterns (weather types, WTs) in the western Mediterranean basin. For this purpose, we analyzed a large database of rainfall events collected between 1985 and 2015 in 46 experimental plots and catchments with the aim to: (i) evaluate seasonal differences in the contribution of rainfall, runoff, and sediment yield produced by the WTs; and (ii) to analyze the seasonal efficiency of the different WTs (relation frequency and magnitude) related to rainfall, runoff, and sediment yield. The results indicate two different temporal patterns: the first weather type exhibits (during the cold period: autumn and winter) westerly flows that produce the highest rainfall, runoff, and sediment yield values throughout the territory; the second weather type exhibits easterly flows that predominate during the warm period (spring and summer) and it is located on the Mediterranean coast of the Iberian Peninsula. However, the cyclonic situations present high frequency throughout the whole year with a large influence extended around the western Mediterranean basin. Contrary, the anticyclonic situations, despite of its high frequency, do not contribute significantly to the total rainfall, runoff, and sediment (showing the lowest efficiency) because of atmospheric stability that currently characterize this atmospheric pattern. Our approach helps to better understand the relationship of WTs on the seasonal and spatial variability of rainfall, runoff and sediment yield with a regional scale based on the large dataset and number of soil erosion experimental stations

    Relationship of Weather Types on the Seasonal and Spatial Variability of Rainfall, Runoff, and Sediment Yield in the Western Mediterranean Basin

    Get PDF
    Rainfall is the key factor to understand soil erosion processes, mechanisms, and rates. Most research was conducted to determine rainfall characteristics and their relationship with soil erosion (erosivity) but there is little information about how atmospheric patterns control soil losses, and this is important to enable sustainable environmental planning and risk prevention. We investigated the temporal and spatial variability of the relationships of rainfall, runoff, and sediment yield with atmospheric patterns (weather types, WTs) in the western Mediterranean basin. For this purpose, we analyzed a large database of rainfall events collected between 1985 and 2015 in 46 experimental plots and catchments with the aim to: (i) evaluate seasonal differences in the contribution of rainfall, runoff, and sediment yield produced by the WTs; and (ii) to analyze the seasonal efficiency of the different WTs (relation frequency and magnitude) related to rainfall, runoff, and sediment yield. The results indicate two different temporal patterns: the first weather type exhibits (during the cold period: autumn and winter) westerly flows that produce the highest rainfall, runoff, and sediment yield values throughout the territory; the second weather type exhibits easterly flows that predominate during the warm period (spring and summer) and it is located on the Mediterranean coast of the Iberian Peninsula. However, the cyclonic situations present high frequency throughout the whole year with a large influence extended around the western Mediterranean basin. Contrary, the anticyclonic situations, despite of its high frequency, do not contribute significantly to the total rainfall, runoff, and sediment (showing the lowest efficiency) because of atmospheric stability that currently characterize this atmospheric pattern. Our approach helps to better understand the relationship of WTs on the seasonal and spatial variability of rainfall, runoff and sediment yield with a regional scale based on the large dataset and number of soil erosion experimental stations.Spanish Government (Ministry of Economy and Competitiveness, MINECO) and FEDER Projects: CGL2014 52135-C3-3-R, ESP2017-89463-C3-3-R, CGL2014-59946-R, CGL2015-65569-R, CGL2015-64284-C2-2-R, CGL2015-64284-C2-1-R, CGL2016-78075-P, GL2008-02879/BTE, LEDDRA 243857, RECARE-FP7, CGL2017-83866-C3-1-R, and PCIN-2017-061/AEI. Dhais Peña-Angulo received a “Juan de la Cierva” postdoctoral contract (FJCI-2017-33652 Spanish Ministry of Economy and Competitiveness, MEC). Ana Lucia acknowledge the "Brigitte-Schlieben-Lange-Programm". The “Geoenvironmental Processes and Global Change” (E02_17R) was financed by the Aragón Government and the European Social Fund. José Andrés López-Tarazón acknowledges the Secretariat for Universities and Research of the Department of the Economy and Knowledge of the Autonomous Government of Catalonia for supporting the Consolidated Research Group 2014 SGR 645 (RIUS- Fluvial Dynamics Research Group). Artemi Cerdà thank the funding of the OCDE TAD/CRP JA00088807. José Martínez-Fernandez acknowledges the project Unidad de Excelencia CLU-2018-04 co-funded by FEDER and Castilla y León Government. Ane Zabaleta is supported by the Hydro-Environmental Processes consolidated research group (IT1029-16, Basque Government). This paper has the benefit of the Lab and Field Data Pool created within the framework of the COST action CONNECTEUR (ES1306)

    Test beam results of a stereo preshower integrated in the liquid argon accordion calorimeter

    Get PDF
    This paper describes the construction of an integrated preshower within the RD3 liquid argon accordion calorimeter. It has a stereo view which enables the measurement of two transverse coordinates. The prototype was tested at CERN with electrons, photons and muons to validate its capability to work at LHC (Energy resolution, impact point resolution, angular resolution, π o γ rejection). (Elsevier

    HE-LHC: The High-Energy Large Hadron Collider – Future Circular Collider Conceptual Design Report Volume 4

    Get PDF
    In response to the 2013 Update of the European Strategy for Particle Physics (EPPSU), the Future Circular Collider (FCC) study was launched as a world-wide international collaboration hosted by CERN. The FCC study covered an energy-frontier hadron collider (FCC-hh), a highest-luminosity high-energy lepton collider (FCC-ee), the corresponding 100 km tunnel infrastructure, as well as the physics opportunities of these two colliders, and a high-energy LHC, based on FCC-hh technology. This document constitutes the third volume of the FCC Conceptual Design Report, devoted to the hadron collider FCC-hh. It summarizes the FCC-hh physics discovery opportunities, presents the FCC-hh accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation. Combining ingredients from the Large Hadron Collider (LHC), the high-luminosity LHC upgrade and adding novel technologies and approaches, the FCC-hh design aims at significantly extending the energy frontier to 100 TeV. Its unprecedented centre-of-mass collision energy will make the FCC-hh a unique instrument to explore physics beyond the Standard Model, offering great direct sensitivity to new physics and discoveries

    FCC-ee: The Lepton Collider – Future Circular Collider Conceptual Design Report Volume 2

    Get PDF
    corecore