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Abstract

A separate liquid argon preshower detector consisting of two layers featuring a �ne granu-

larity of 2.5 10�3 was studied by the RD3 collaboration. A prototype covering approximately

0.8 in pseudo-rapidity and 9 degrees in azimuth was built and tested at CERN in July 94.

CMOS and GaAs VLSI preampli�ers were designed and tested for this occasion. The com-

bined response of this detector and an accordion electromagnetic calorimeter prototype to

muons, electrons and photons is presented. For minimum ionizing tracks a signal-to-noise

ratio of 4.5 per preshower layer was measured. Above 150 GeV the space resolution for elec-

trons is better than 250 �m in both directions. The precision on the electromagnetic shower

direction, determined together with the calorimeter, is better than 4 mrad above 50 GeV. It

is concluded that the preshower detector would adequately ful�l its role for future operation

at CERN Large Hadron Collider.

Submitted to Nucl. Instr. and Meth.
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1 Introduction

The idea of equipping the accordion liquid argon (LAr) electromagnetic calorimeter, designed

for the future large hadron collider (LHC) at CERN, with a �ne-grained preshower detector is

dictated by several requirements. A device is needed to independently measure the energy lost

in the inactive material upstream of the calorimeter, thereby preserving the energy resolution

for electrons and photons. By combining the position measurement of the �rst calorimeter com-

partment with that of the preshower, a precise determination of photon direction can be derived

which prevents the angular term from deteriorating signi�cantly the H!  mass resolution.

Furthermore, it has been shown [1] that a jet rejection factor of 104 is needed to reduce the huge

background contribution stemming from -jet QCD events below the H!  signal. This poses

the requirement on the preshower-calorimeter system to supply a rejection factor better than 3

against isolated �
0's that dominate the background after calorimeter cuts.

Figure 1: Photograph of the preshower detector prototype.

The potential of a �ne-grained preshower was explored with a small prototype (6�6 cm2)

at CERN a few years ago [2]. The obtained performance showed the adequacy of the concept

regarding the LHC requirements. Here we present a study of a modular system that constitutes

a step forward in the integration of such a preshower into the ATLAS calorimetry system. For

more details, refer to [3].
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2 Detector geometry

Figure 2: Transverse cut of the ATLAS preshower detector.

The preshower detector is placed in front of the accordion electromagnetic calorimeter inside

the barrel cryostat. It is composed of 2 active layers of liquid argon measuring the � and the

� coordinates of the incident particle (see �gure 2). In order to convert photons, each layer is

preceded by a slab of lead. The choice of having 2 X0 (including the upstream inactive material)

in front of the �rst active layer and 3 X0 in front of the second one was determined by Monte

Carlo simulations [4]. The actual lead thickness is a function of the longitudinal position to keep

the amount of traversed material rapidity-independent. The ideal curved structure in � was

abandoned in favor of a polygonal one which is easier to build. A typical structure would be 32

identical azimuthal sectors (�� = 11:25�) of 3.1 m length covering half a barrel (pseudo-rapidity

up to 1.5). Each azimuthal sector would be composed of 16 modules (8 per view) of 27 cm in

width, supported by 2 lateral thin skirts made of stainless steel sliding on mini-rails anchored

in front of the e.m. calorimeter.

µ
Cathodes

Active layer
of preshower

Muon paths

Interaction point

µ µ

Figure 3: Principle of the electrode inclination de�ning an elementary cell.
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A module is built up by alternating anode and cathode electrodes de�ning the electrical �eld

for the charge collection in the 10 mm thick LAr gap. The electrodes of each module are slanted

so that they o�er a 100% geometric e�ciency to muons (i.e. a muon will pass through at most

two cells). This is shown in �gure 3; such a design improves the space resolution. Because this

ideal arrangement requires a di�erent inclination for each cell, which is in practice di�cult to

achieve, we have opted for a simpler geometry. In the � layer of the preshower, the inclination

of the cells is the same throughout a module, i.e. changes every 64 cells. In the � layer, the

cell inclination changes every eight cells. The variation in inclination in the � layer is needed

because of the polygonal shape as opposed to the circular one. The electric �eld is 1 kV/mm

for the whole detector.

Figure 4: View of a part of the sector prototype. Only the �rst layer is represented. During the

test, the �rst module was not installed. The 3 � modules were placed behind this row.

Figure 5: Exploded view of a module.

A prototype has been built by the RD3 collaboration, see �gure 1. Its dimensions are

slightly di�erent from those quoted previously in order to match the existing 2 m prototype

of the electromagnetic (e.m.) calorimeter [5]. It covers 9� in � which corresponds to one e.m.
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calorimeter module, and a pseudo-rapidity range of approximately 0.2 to 0.8, see �gure 4. The

granularity is �� � �� = 0:0025� 0:08 and �� � �� = 0:08 � 0:0025 for the � and � layer

respectively. Seven modules were installed: 4 in the �rst (�) layer and 3 in the second one (�).

Each module reads 64 elementary intervals in the �ne-grained direction and 2 in the coarse one;

therefore there are 128 individual cells per module, see �gure 5.

A �rst lead layer complements the amount of material (cryostat, beam instruments) to a

constant thickness of 2 X0 before the � active layer and a second one adds one more radiation

length in front of the second active layer.

3 Module production technique

A preshower module is produced by moulding a layer of epoxy on top of the electrodes stacked

in a hermetic mould and precisely positioned with spacing shims. The electrodes (both cathodes

and anodes) are about 19 cm long and separated by a distance of the order of 2 mm. Cathodes

are made of Cu-Be and are 0.2 mm thick. Anodes are multi-layer kapton electrodes with Cu-

clad HV pads on their external faces, and are 0.25 mm thick on average. Numerous tests

were performed to select the epoxy system and the composite structure in order to obtain a

correct cryogenic behavior of the modules. The epoxy resin �nally selected (CIBA - GEIGY

system MY745, HY905, DY072) is loaded with micro glass �bers (50% in weight). Its relative

shrinkage coe�cient from room temperature to LN2 temperature is �L/L = 0.7 %. Moreover,

to obtain an object remaining at when cooled down to LN2 temperature, we had to insert glass-

epoxy reinforcement bars buried in the epoxy resin. Some of them are placed along the lateral

edges, the others are laid down in the x and y directions; they further reduce the shrinkage

coe�cient of the composite object down to a value comparable to the usual glass epoxy used

in the printed circuits (�L/L = 0.36 %). The resin after outgassing is injected with the mould

placed in a vacuum-oven. A di�erential pressure of 0.3 bar is applied during the injection. The

polymerization cycle lasts 16 h and reaches 130 �C. After unmoulding and ethanol cleaning,

NOMEX honeycomb strips are slid into the cells to safely maintain the liquid argon gap. Such

a module was irradiated in liquid argon with neutrons at SARA [6] up to a uence as high as

2 1014 neutrons.cm�2. After the irradiation, no mechanical or electrical damages were observed.

4 Electronics

Given the high channel density of such a detector, VLSI techniques have to be employed to design

the front-end electronics. This work started by designing and producing octal preampli�er chips

in CMOS and in GaAs monolithic processes.

4.1 CMOS preampli�ers

ICON is a current conveyer preampli�er based on a layout that was originally considered for

the readout of silicon detectors [7]. To meet the particular needs of the LAr calorimetry, some

improvements had to be made regarding the current gain and the noise. This study was carried

out using CMOS monolithic processes of three di�erent �rms: MIETEC, ES2 and AMS; see

table 1. So far the best performance with respect to the speed was measured at 77 �K on the

AMS 1.2 �m version (t5�100%p (260 ns triangle)=62 ns when �ltered by a CR-RC2 �lter of 25 ns

shaping time), with an equivalent noise current at its input of 19 nA for a detector capacitance

of 20 pF and a 25 ns CR-RC2 shaping time. Being the only ones available at that time, 512

channels of the MIETEC version, which has a lower performance in terms of speed, were used

to equip 4 preshower modules in July 94.
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Table 1: Measured performance of ICON preampli�ers from three di�erent manufacturers

Type MIETEC ES2 AMS
(bias voltage) (� 4.5 V) (� 4 V) (� 3.5 V)

27�C
peaking time (5-100%) 64 ns 30 ns 14 ns

on a Dirac

77�K

peaking time (5-100%) 40 ns 25 ns 12 ns

on a Dirac

Noise at 20�C, (no �lter)

(ENC: e�) 4400 4200 4000

(10 pF)

Noise at 77�K, (no �lter) 2200+50/pF 1900 2400+30/pF
(ENC: e�)

20�C 35 mW 55 mW 20 mW

(20% ICON - 80% Bu�er)

77�K

power dissipation 51 mW 70 mW 23 mW

(20% ICON - 80% Bu�er)

4.2 GaAs preampli�ers

The second device under study is a monolithic charge-sensitive preampli�er made with a GaAs
ion-implanted MESFET process [8]. The chip contains dominant pole preampli�ers with a gain-
bandwidth product of about 1 GHz. The preampli�er input capacitance is 12 pF. The series
noise at liquid argon temperature, 87�K, is 0.84 nV/

p
Hz on average (0.54 nV/

p
Hz for the best

chips), and the corner frequency of the 1/f noise does not reach 1 MHz. Its power dissipation
is 7.5 mW. With CR2-RC2 bipolar shaping an equivalent noise current of 6.9 nA on average was
obtained at 87�K for a detector capacitance of 20 pF and a peaking time of 28 ns on a Dirac
pulse. 384 channels of that type were mounted on 3 preshower modules for the July 94 test
beam period.

4.3 Mother boards

Fourteen mother boards (MB's), made of Cobrisol which is a material similar to G10, were
needed to read the whole RD3 preshower prototype in the test beam. They were 8 cm wide
and their length, which varied according to the module, were of the order of 20 cm. Each MB
had 6 layers and its overall thickness was 1.2 mm which was a compromise to make the MB
as thin as possible and to keep some rigidity to tolerate the mechanical stress during mounting
and dismounting operations. The MB was directly mounted on the preshower detector and the
contacts were established through 64 holtite female connectors. The MB contraction at LAr
temperature was similar to the value given by a preshower module, (see section 3). The soldered
components were SMD type in order to keep the total thickness of the PCB, its components and
the pile-up of 10 read-out cables, less than 20 mm. We used Phillips diodes BAV99 to protect
the inputs of the preampli�ers. NPO capacitors and resistors with temperature coe�cient
100 ppm/�C were used to cope with the low temperature of LAr.

A test pulse system was implemented to be used as a diagnostic and calibration means. For
this we made a trace 3 mm wide on the mother board internal layer, and on the component
layer we printed a solid rectangle of 3�4 mm2 size at each input trace of the preampli�er above
the position of the 3 mm internal trace. This design creates a 4 pF capacitance, which is big
enough to inject a small current test pulse with approximately 260 ns fall time. This test pulse
system allows us to calibrate the preshower with an accuracy of about 10%.

7



4.4 Read-out

Signals from the preshower were brought out of the cryostat via Fileca5 16 channel cables

of 50 
 characteristic impedance. The outputs from the GaAs preampli�ers were �ltered by

(CR)2-(RC)2 shapers of 25 ns time constant. The shaped signals were sampled at the peak with

Track&Hold units and digitized by 12-bit ADC's. The signals from the CMOS preampli�ers

were integrated in 40 ns gated integrators and their outputs were read out by 12-bit ADC's.

5 Performance in a test beam

For the beam tests, the preshower was installed in front of the accordion electromagnetic

calorimeter prototype [5] and was cooled down inside the same cryostat. The calorimeter was

segmented into three radial compartments of 9 X0, 9 X0 and 7 X0 respectively. The granularity

of the e.m. calorimeter was ����� = 0:02� 0:018 for the �rst two radial compartments and

�� ��� = 0:02� 0:036 for the third one.

The test was performed on the H8 beam line of the CERN SPS with electrons and photons.

Muon data were also collected by exploiting the large � contamination in the electron beam

around 150 GeV/c.

The beam line was equipped with four fast scintillation counters, used in the trigger, and

three drift chambers which allowed to reconstruct the particle impact point at the front face of

the preshower.

A simulation of the setup has been performed, using GEANT. More details about the simula-

tion can be found in [9], where most of our results are reported and compared to the experimental

ones obtained during the July 94 test run.

5.1 Shower pro�les

The average pro�les of photon and electron showers in each layer of the preshower are shown

in �gure 6. For both particle types the shower is seen to be slightly broader in the � layer than

in the � layer due to the extra X0 of lead before the � sampling. Photons have slightly thinner

pro�les than electrons due to later shower production, which is con�rmed in the simulation.

The percentages of the total energy found within a 3-cell cluster for various photon energies are

shown in table 2. In both cases it can be seen that the variations in the shower pro�le widths

with energy and position are small and therefore a universal cluster of 3-cell size can be used to

determine the position of the incident particle. For energy measurements a larger cluster will

be more appropriate.

Table 2: Simulation of the percentage of the total energy deposited by a photon within a 3-cell

preshower cluster, for a few di�erent photon energies and pseudo-rapidities.

E (GeV) � % of energy in preshower cluster

� layer � layer

54.5 0.26 92.0 90.0

78.3 0.26 91.9 91.0

104.7 0.26 91.8 90.6

33.4 0.37 93.7 91.6

65.9 0.37 93.4 91.0

106.3 0.37 93.5 90.7

5Manufactured by FILECA, Sainte Genevi�eve, France
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Figure 6: Shower pro�les: a and b for a 200 GeV electron at � ' 0.3 in the preshower � and �

layers respectively; c and d for a 105 GeV photon at � ' 0.26 in the preshower � and � layers
respectively.

5.2 O�-line calibration

The o�-line calibration was performed by equalizing the response of the cell triplets with 200
GeV electrons. The new gains (calculated cell by cell) are then introduced in the o�-line ana-
lysis program. This operation is repeated at least once because the calculation of the position
barycenter depends on the gains. Then the absolute normalization factor is deduced from the
muon peak which is expected at 2.11 MeV on average for 10 mm of active LAr at � = 0. The
sigma of the average response after o�-line calibration was of the order of 2%.

5.3 S-shape corrections

The position of electrons and photons is determined using a barycentric calculation within a
cell cluster. The resulting distribution of the beam particle position is periodic because of the
discrete structure of the detector (period of one cell). In �gure 7 the pro�le of the � impact
position (expressed in cell units) using the beam chambers is plotted as a function of the position
determined with the preshower. Such a variation can be corrected using a S-shape function6:

�
TRUE

= a0 + a1:round(�PS) + a2:(round(�PS))
2 + a3:tan

�1[a4:(�PS � round(�
PS
))]

where the last term describes the pattern and the �rst three give the global position (practically
along a straight line). The same method was applied to correct the � preshower impact position.

6round(x) � closest integer to x
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Figure 7: Pro�le of the impact position given by the beam chambers against the position found

using the preshower. The �tted correction function is superimposed. The cell width in this

preshower module is 3.2 mm.

5.4 Response to muons

For each view, the muon signal was reconstructed by adding the contributions of two adjacent

cells: the most energetic one and its most energetic neighbor found in a window of 5 cells centered

on the extrapolated beam impact point. This signal is plotted in �gure 8. The signal/noise ratio

(hsignali/�(noise)) is about 4.5 per preshower layer with GaAs preampli�ers and 4.0 with CMOS

preampli�ers. The electronic noise was measured with random trigger events by choosing the

signals of two adjacent cells randomly within the beam impact pro�le.

MeV

GaAs preamp.

Muon signal in 10 mm LAr

C
O

U
N

T
S

σ(noise) = 0.46 MeV

signal = 2.11 MeV

Signal/Noise = 4.53

Figure 8: Muon signal in one preshower layer read out by GaAs preampli�ers.

The space resolution, after S-shape function correction and after unfolding the contribution

due to the beam chambers (�250 �m in both directions at 150 GeV), is of the order of 860 �m.
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5.5 Response to electrons

5.5.1 Dynamics of the electron signal

Figure 9 shows the maximum of deposited energy in one cell by electrons (in MIP) with 95%

acceptance in each layer and at � = 0:3. The plotted curves are parametrized as a1E
a2 where

a1 = 7:78 � 0:16 and 10:2 � 0:15 and a2 = 0:385 � 0:005 and 0:538 � 0:003 for the � and �

layers respectively. These dynamics curves extrapolated to 2 TeV give a deposited signal of

611�25 MIP in the � layer and 146�9 MIP in the � layer. For a signal/noise ratio of 4 per

layer, the required dynamic range in � is approximately 12 bits and 2 bits less in the � layer.

The simulation results are close to our extrapolated values, 609�22 MIP in � and 164�9 MIP

in �.

Figure 9: Maximum of deposited energy in one cell by electrons (in MIP) with 95% acceptance

in each layer and at � = 0:3. (95% of the electrons fall bellow the plotted value).

5.5.2 Energy resolution

The energy deposited by 287 GeV electrons is presented in �gure 10. The electron signal was

collected over a calorimeter cell nonet and 100 (50/layer) cells in the preshower centered on

the most energetic channel. The represented quantity is the total energy obtained as Etot =

�(�Epsh+ �E1+ E2+E3), where Epsh, E1, E2, E3 refer to the signals collected in the preshower

and the three calorimeter radial compartments,� and � are energy dependent weights introduced

to minimize the width of the energy distribution and � is an overall calibration coe�cient.

Standard position-dependent energy corrections determined at 287 GeV were applied to the

calorimeter in order to correct for the shower containment in � and the modulation of the

transverse LAr thickness in � [5].

The energy resolution of the preshower-calorimeter system at � = 0:3 is plotted in �gure 11

and parameterized as:

�E

E
=

(12:5� 0:3)%
p
E(GeV)

�
(337� 20)

E(MeV)
� (0:45� 0:06)%
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Figure 10: Energy reconstructed in the preshower-calorimeter system from 287 GeV e� before
(dashed) and after (solid) adding the preshower contribution.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 50 100 150 200 250
E (GeV)

σ/
E

Figure 11: Energy resolution as a function of the incident electron energy measured at � = 0:3.

This can be compared to Monte-Carlo simulations shown in table 3, for which the energy
resolution was parameterized as:

�E

E
=

ap
E
� b

Electronic noise and pile-up e�ects (which would contribute a term proportional to 1/E)
were not simulated. The experimental result is in good agreement with the predictions. The
large value of the sampling term (12.5%) is due to the fact that the dead space between the
preshower and the calorimeter was too large (�10 cm). A new simulationmade at � = 0.26, with
only 5 cm between the preshower and the calorimeter, led to the following energy resolution:

�E

E
=

(10:5� 0:2)%
p
E(GeV)

� (0:40� 0:06)%
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Table 3: Energy resolution of the preshower-calorimeter system estimated by Monte-Carlo sim-
ulation

�=0.1 �=0.26 �=0.37 �=0.57

a ( %p
GeV

) 11.6 (�0.2) 11.9 (�0.2) 12.4 (�0.2) 12.7 (�0.2)

b (%) 0.18 (�0.15) 0.36 (�0.06) 0.16 (�0.1) 0 (�0.2)

The dead zone between the preshower and the calorimeter is a critical point because it cor-
responds to a stage of the shower where a signi�cant fraction of the particle energy can be
deposited. This distance will be reduced in the �nal design by making use of compact connec-
tions and cablings.

5.5.3 Linearity of the response

The linearity has been estimated by comparing the average energy of the preshower-calorimeter
system, after energy correction and absolute calibration at 150 GeV, with the nominal energy
of the beam, see �gure 12. In this picture, the two dotted curves represent the uncertainties on
the beam momentum, i.e.:

�P

P
=

25

P
%� 0:5% (P in GeV)

where the �rst term is linked to the hysteresis e�ect of the bending magnet and the second term
includes the uncertainties due to geometry and calibration.
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Figure 12: Linearity of the preshower-calorimeter response function of the electron energy. The
two dotted curves represent the uncertainties on the beam momentum, see text.

5.5.4 Space resolution

The electromagnetic shower positions (� and �) were reconstructed as the energy-weighted
barycenter of the three adjacent cells consisting of the most energetic one and its two neighbors.
Both positions were also provided by means of 3 beam chambers. The space resolution at � = 0:3
as a function of the incident electron energy, after S-shape correction and after unfolding the
contribution due to the beam chambers (� ' 270 (530) �m at 200 (10) GeV), is given in �gure 13.
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The curves which are superimposed on the data points,

�� =
(2:02� 0:03)
p
E(GeV)

� (0:19� 0:004) mm

and �� =
(1:67� 0:03)
p
E(GeV)

� (0:16� 0:004) mm,

agree very well with the predictions of Monte-Carlo simulations (see table 4). The space resolu-

tion is slightly better in the � layer where the signal is larger owing to the additional lead placed

at the front. Above 200 GeV, the position resolution is better than 230 �m in both coordinates.
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Figure 13: Space resolution of the preshower after S-shape correction and unfolding of the beam

chamber contribution.

Table 4: Simulated space resolution for electrons at di�erent �-values

� � layer (mm) � layer (mm)

0.1
1:80(�0:05)p

E
� 0:22(�0:01)

1:55(�0:06)p
E

� 0:19(�0:01)

0.26
1:79(�0:07)

p
E

� 0:25(�0:01)
1:62(�0:06)

p
E

� 0:17(�0:01)

0.37
2:09(�0:1)
p
E

� 0:22(�0:01)
1:59(�0:08)

p
E

� 0:17(�0:01)

0.57
1:91(�0:02)

p
E

� 0:24(�0:01)
1:63(�0:07)

p
E

� 0:21(�0:01)

5.5.5 Angular resolution

The preshower and calorimeter information can be combined to determine the direction of the

incoming electron through the measurements of the shower position at two di�erent depths; in

our case the preshower and the �rst compartment of the calorimeter were used. The angle of
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the incident particle is then given, in the � and � directions, by

�i = arctan(
di;calo� di;ps

Di

);

where the numerator is the di�erence between the shower di positions reconstructed in the
two detectors and the denominator Di is the average lever arm estimated with a Monte-Carlo
simulation program, see table 5. In fact, the calculation of the angular resolution in � is slightly
more complicated because the electron beam is not perpendicular to the � layer. This involves a
factor sin(�) in the de�nition of di when using the longitudinal position given by the � layer. For
the same event, the angles �i are then compared to the angles measured using the �rst and the
last beam chambers, located upstream of the cryostat, and separated by 11.124 m. Figure 14
shows the angular resolution at � = 0:3, in both directions, as a function of the incident electron
energy. The angular resolution can be �tted as

�� =
(27:6� 0:2)
p
E(GeV)

� (1:0� 0:05) mrad

and �� =
(22:3� 0:2)
p
E(GeV)

� (0� 0:2) mrad.

The very good angular resolution is partly due to the lever arms which are about 25% longer
than in the �nal design with a closer distance to the calorimeter. The Monte Carlo predictions
given in table 6 are in fair agreement with the measured results.
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Figure 14: Angular resolution in both directions of the combined preshower-calorimeter system
at � = 0:3 as a function of the electron energy.

The test beam divergence in both � and � directions for various electron energies were small:
0.2 and 0.1 mrad at 50 GeV in � and � respectively. The beam divergence is at least one order of
magnitude smaller than the angular resolution; this will allow us to neglect it when considering
the photon data.
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Table 5: Simulated lever arms in cm for various electron energies and �-values.

pseudo-rapidity 0.26 0.37 0.57

E(GeV) d� d� d� d� d� d�

10 21.2 19.3 20.7 21.2

20 21.7 19.8 21.5 20.3 21.2 21.7

50 22.3 20.4 21.9 22.5

100 22.9 21.0 22.3 23.0

200 23.5 21.6 22.2 23.3 22.9 23.7

300 23.9 22.0 23.7 22.6

Table 6: Simulated angular resolution for electrons at di�erent �-values.

� � layer (mrad) � layer (mrad)

0.37
2 :5 (�1:4)

p
E

� 1:9(�0:1)
25:3 (�0:5)

p
E

� 1:(�0:1)

0.57
28:4 (�0:2)

p
E

� 1:2(�0:3)
26:6 (�0:4)

p
E

� 0(�0:2)

5.5.6 Response to photons

The experimental setup used to measure the response of the prototype to photons is shown in
�gure 15. The photon beam is produced by placing a slab of aluminum in the electron beam.
Photons and electrons are separated with a magnet which deects the electrons in the � direction
to an area of the electromagnetic calorimeter not covered by the preshower. The electron beam
goes through a scintillator (S3) and two multiwire beam chambers, one before the Al radiator
(BC1) and one after the magnet (BC2).

e- γ
e-

e-

BC1

BC2

S2

S3

Al radiator

Preshower

Lead pre-converter

Electromagnetic
calorimeter

e-+γ

Magnet

12.6m2.5m

11.124m

14cm

Figure 15: The photon beam setup.

It is known that a signi�cant number of electrons will produce more than one photon in the
Al radiator. In order to identify these multiple photon events, a preconverter (a 1X0 thick slab
of lead) followed by a scintillator (S2) was placed in the photon beam. In a simulation of the
experimental setup, for a 200 GeV electron beam there was a 40%multiple photon contamination
without the lead and only 22% when using the preconverter, i.e. by requiring no signal in S2.
The energy of the photon beam was varied between 30 and 120 GeV either by changing the
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electron beam energy (150 GeV or 200 GeV) or by varying the strength of the magnetic �eld

while keeping the position of S3 �xed.

Since there is no way of knowing the photon impact position independently of that given by

the preshower detector, the photon spatial resolution cannot be measured.

The angular resolution can be measured because its calculation only involves the use of

particle impacts in the preshower and the accordion calorimeter. The calculation of the photon

beam divergence is however not possible. Therefore it was assumed that it is similar to that

of the electron beam (i.e. � 0.2 (0.1) mrad in � (�) respectively), i.e. small compared to the

Monte Carlo prediction of the angular resolution. This assumption is reasonable since, during

the creation of a photon by Bremsstrahlung in which the energy of the electron in the initial

and �nal states is large, the photon and the degraded electron are emitted within a rms angle

of the order of � = mec
2

E
rad where E is the initial electron energy.

The S-shape corrections, as described in section 5.3, were performed, assuming the same be-

havior for photons and electrons of similar pseudo-rapidity. The angular resolution is calculated

in exactly the same way as for the electron data. The photon lever arms used are shown in

table 7.

Table 7: Simulated lever arms in cm for photons of various energies and pseudo-rapidities.

pseudo-rapidity 0.26 0.57

E (GeV) � layer � layer � layer � layer

10 21.5 19.6 21.0 21.5

20 22.0 20.1 21.6 22.1

50 22.7 20.8 22.1 22.7

100 23.1 21.2 22.7 23.4

200 23.8 21.9

The variation of the angular resolution with photon energy is shown in �gure 16. Only three

di�erent photon beam energies were available for each of the two values of pseudo-rapidity and

therefore the points for both � = 0:29 and � = 0:37 have been used to �t the two curves. One

obtains:

�� =
(16:2� 0:3)
p
E (GeV)

� (1:0� 0:1) mrad

�� =
(19:2� 0:5)
p
E (GeV)

� (1:7� 0:1) mrad.

These values are slightly better than those derived from the simulation, see table 8. This was

also observed for electrons. A suggested explanation is that in the simulation, the particle beam

covered three accordion calorimeter cells whereas in the actual tests only one cell was covered.

Table 8: Simulated angular resolution for photons at di�erent �-values.

� � layer (mrad) � layer (mrad)

0.26
20:9 (�0:6)

p
E

� 1:3 (�0:1)
26:9 (�1:0)

p
E

� 1:5 (�0:1)

0.57
21:8 (�0:8)

p
E

� 0:84 (�0:3)
27:4 (�1:4)

p
E

� 1:3 (�0:4)
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Figure 16: Angular resolution in both directions of the combined preshower-calorimeter system

as a function of the photon energy. The dotted (dashed) line �ts the � (�) active layer results

respectively.

6 Conclusions

The moulding process developed over the last three years to produce preshower modules is

technologically a good candidate for larger scale construction. The performance of the prototype

measured in electron, photon and muon test beams shows that this concept meets the LHC

requirements especially with respect to the space and angular resolution. Although GaAs cold

analog electronics seem more promising for this application, CMOS preampli�ers may constitute

a good alternative solution if their resistance to ionizing radiation at LAr temperature can be

achieved. The di�culty of the integration of this device in a detector such as ATLAS comes from

the large number of electronic channels (115,000 for j�j �1.4) to bring out of the cryostat. Analog

optical links [10] that allow the reduction of the overall diameter of the cryostat feedthroughs may

be envisaged. During a beam test in September 94, 32 channels of such links were successfully

used for the read-out of a preshower module.

Acknowlegments

The authors wish to thank the technical sta� of the participating laboratories for their skillful

contribution to the construction of this prototype.

References

[1] L. Fayard and G. Unal, search for Higgs decay into photons with ATLAS, ATLAS internal

note, physics-NO-001, December 91.

D. Froidevaux et al., comparison of the ATLAS and CMS discovery potential for the H! 

channel at the LHC, ATLAS internal note, physics-NO-064, February 95.

[2] B. Aubert et al. (RD3 Collaboration), Performance of a liquid argon preshower detector

integrated with an accordion calorimeter, Nucl. Inst. and Meth. A 330 (1993) 405.

[3] RD3 Collaboration, CERN/DRDC/92-40 (1992).

18



[4] G. Unal, Preshower performance for gamma identi�cation, ATLAS Internal Note CAL-NO-

009, July 1992.

[5] D.M. Gingrich et al. (RD3 Collaboration), Performance of a large scale prototype of the

ATLAS accordion electromagnetic calorimeter, Nucl. Instr. and Meth. A 364 (1995) 290.

[6] J. Collot et al., A neutron irradiation facility featuring cryogenic temperatures and dedicated

to Large Hadron Collider detector design, Nucl. Inst. and Meth. A350 (1994) 525.

[7] D. Dzahini et al., A CMOS current preampli�er and shaper with 50 
 line driver for a liquid

argon preshower, IEEE Trans. on Nucl. Sci., Vol. 42, No 4 (1995) 767.

[8] D.V. Camin, N. Fedyakin and G. Pessina, Monolithic GaAs readout for a LAr preshower de-

tector, proceedings of the fourth international conference on calorimetry in high energy

physics, La Biodola, September 1993.

D.V. Camin, G. Pessina and E. Previtali, Front-end in GaAs, Nucl. Inst. and Meth. A315

(1992) 385.

[9] G. Mahout, Th�ese de l'Universit�e Joseph Fourier de Grenoble, ISN 95.09, 1995.

[10] S. Tisserant (on behalf of the RD3 collaboration), Analog optical link in liquid argon, pro-

ceedings of the �fth international conference on calorimetry in high energy physics, BNL,

September 1994, eds. H.A. Gordon and D. Rueger (World Scienti�c Publishing, Singapore)

p 449.

B. Dinkespiler et al., Analog optical links for the liquid argon calorimeters, proceedings of

the �rst workshop on electronics for LHC experiments, Lisbon, CERN/LHCC/95-56 Oct 95.

L.O. Eek (on behalf of the Atlas/Larg collaboration), A �ne-grained liquid argon preshower

detector and an analog optical link for its read-out, proceedings of the international euro-

physics conference on high energy physics, Brussels, July 1995.

19


