206 research outputs found

    4Pipe4-A 454 data analysis pipeline for SNP detection in datasets with no reference sequence or strain information

    Get PDF
    This work was fully supported by projects SOBREIRO/0036/2009 (under the framework of the Cork Oak ESTs Consortium), PTDC/BIA-BEC/098783/2008 and PTDC/AGR-GPL/119943/2010 from Fundação para a Ciência e Tecnologia (FCT) – Portugal. F. Pina-Martins was funded by FCT grant SFRH/BD/51411/2011, under the PhD program “Biology and Ecology of Global Changes”, Univ. Aveiro & Univ. Lisbon, Portugal. D. Batista was funded by FCT grant SFRH/BPD/104629/2014

    Next generation transcriptomes for next generation genomes using est2assembly

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The decreasing costs of capillary-based Sanger sequencing and next generation technologies, such as 454 pyrosequencing, have prompted an explosion of transcriptome projects in non-model species, where even shallow sequencing of transcriptomes can now be used to examine a range of research questions. This rapid growth in data has outstripped the ability of researchers working on non-model species to analyze and mine transcriptome data efficiently.</p> <p>Results</p> <p>Here we present a semi-automated platform '<it>est2assembly</it>' that processes raw sequence data from Sanger or 454 sequencing into a hybrid <it>de-novo </it>assembly, annotates it and produces GMOD compatible output, including a SeqFeature database suitable for GBrowse. Users are able to parameterize assembler variables, judge assembly quality and determine the optimal assembly for their specific needs. We used <it>est2assembly </it>to process <it>Drosophila </it>and <it>Bicyclus </it>public Sanger EST data and then compared them to published 454 data as well as eight new insect transcriptome collections.</p> <p>Conclusions</p> <p>Analysis of such a wide variety of data allows us to understand how these new technologies can assist EST project design. We determine that assembler parameterization is as essential as standardized methods to judge the output of ESTs projects. Further, even shallow sequencing using 454 produces sufficient data to be of wide use to the community. <it>est2assembly </it>is an important tool to assist manual curation for gene models, an important resource in their own right but especially for species which are due to acquire a genome project using Next Generation Sequencing.</p

    A sweetpotato gene index established by de novo assembly of pyrosequencing and Sanger sequences and mining for gene-based microsatellite markers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sweetpotato (<it>Ipomoea batatas </it>(L.) Lam.), a hexaploid outcrossing crop, is an important staple and food security crop in developing countries in Africa and Asia. The availability of genomic resources for sweetpotato is in striking contrast to its importance for human nutrition. Previously existing sequence data were restricted to around 22,000 expressed sequence tag (EST) sequences and ~ 1,500 GenBank sequences. We have used 454 pyrosequencing to augment the available gene sequence information to enhance functional genomics and marker design for this plant species.</p> <p>Results</p> <p>Two quarter 454 pyrosequencing runs used two normalized cDNA collections from stems and leaves from drought-stressed sweetpotato clone <it>Tanzania </it>and yielded 524,209 reads, which were assembled together with 22,094 publically available expressed sequence tags into 31,685 sets of overlapping DNA segments and 34,733 unassembled sequences. Blastx comparisons with the UniRef100 database allowed annotation of 23,957 contigs and 15,342 singletons resulting in 24,657 putatively unique genes. Further, 27,119 sequences had no match to protein sequences of UniRef100database. On the basis of this gene index, we have identified 1,661 gene-based microsatellite sequences, of which 223 were selected for testing and 195 were successfully amplified in a test panel of 6 hexaploid (<it>I. batatas</it>) and 2 diploid (<it>I. trifida</it>) accessions.</p> <p>Conclusions</p> <p>The sweetpotato gene index is a useful source for functionally annotated sweetpotato gene sequences that contains three times more gene sequence information for sweetpotato than previous EST assemblies. A searchable version of the gene index, including a blastn function, is available at <url>http://www.cipotato.org/sweetpotato_gene_index</url>.</p

    De novo characterization of the gametophyte transcriptome in bracken fern, Pteridium aquilinum

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Because of their phylogenetic position and unique characteristics of their biology and life cycle, ferns represent an important lineage for studying the evolution of land plants. Large and complex genomes in ferns combined with the absence of economically important species have been a barrier to the development of genomic resources. However, high throughput sequencing technologies are now being widely applied to non-model species. We leveraged the Roche 454 GS-FLX Titanium pyrosequencing platform in sequencing the gametophyte transcriptome of bracken fern (<it>Pteridium aquilinum</it>) to develop genomic resources for evolutionary studies.</p> <p>Results</p> <p>681,722 quality and adapter trimmed reads totaling 254 Mbp were assembled <it>de novo </it>into 56,256 unique sequences (i.e. unigenes) with a mean length of 547.2 bp and a total assembly size of 30.8 Mbp with an average read-depth coverage of 7.0×. We estimate that 87% of the complete transcriptome has been sequenced and that all transcripts have been tagged. 61.8% of the unigenes had blastx hits in the NCBI nr protein database, representing 22,596 unique best hits. The longest open reading frame in 52.2% of the unigenes had positive domain matches in InterProScan searches. We assigned 46.2% of the unigenes with a GO functional annotation and 16.0% with an enzyme code annotation. Enzyme codes were used to retrieve and color KEGG pathway maps. A comparative genomics approach revealed a substantial proportion of genes expressed in bracken gametophytes to be shared across the genomes of <it>Arabidopsis</it>, <it>Selaginella </it>and <it>Physcomitrella</it>, and identified a substantial number of potentially novel fern genes. By comparing the list of <it>Arabidopsis </it>genes identified by blast with a list of gametophyte-specific <it>Arabidopsis </it>genes taken from the literature, we identified a set of potentially conserved gametophyte specific genes. We screened unigenes for repetitive sequences to identify 548 potentially-amplifiable simple sequence repeat loci and 689 expressed transposable elements.</p> <p>Conclusions</p> <p>This study is the first comprehensive transcriptome analysis for a fern and represents an important scientific resource for comparative evolutionary and functional genomics studies in land plants. We demonstrate the utility of high-throughput sequencing of a normalized cDNA library for <it>de novo </it>transcriptome characterization and gene discovery in a non-model plant.</p

    Sequencing, de novo annotation and analysis of the first Anguilla anguilla transcriptome: EeelBase opens new perspectives for the study of the critically endangered european eel

    Get PDF
    Background: Once highly abundant, the European eel (Anguilla anguilla L.; Anguillidae; Teleostei) is considered to be critically endangered and on the verge of extinction, as the stock has declined by 90-99% since the 1980s. Yet, the species is poorly characterized at molecular level with little sequence information available in public databases.\ud \ud Results: The first European eel transcriptome was obtained by 454 FLX Titanium sequencing of a normalized cDNA library, produced from a pool of 18 glass eels (juveniles) from the French Atlantic coast and two sites in the Mediterranean coast. Over 310,000 reads were assembled in a total of 19,631 transcribed contigs, with an average length of 531 nucleotides. Overall 36% of the contigs were annotated to known protein/nucleotide sequences and 35 putative miRNA identified.\ud \ud Conclusions: This study represents the first transcriptome analysis for a critically endangered species. EeelBase, a dedicated database of annotated transcriptome sequences of the European eel is freely available at http://compgen.bio.unipd.it/eeelbase. Considering the multiple factors potentially involved in the decline of the European eel, including anthropogenic factors such as pollution and human-introduced diseases, our results will provide a rich source of data to discover and identify new genes, characterize gene expression, as well as for identification of genetic markers scattered across the genome to be used in various applications

    Gene expression atlas of fruit ripening and transcriptome assembly from RNA-seq data in octoploid strawberry (Fragaria × ananassa)

    Get PDF
    RNA-seq has been used to perform global expression analysis of the achene and the receptacle at four stages of fruit ripening, and of the roots and leaves of strawberry (Fragaria × ananassa). About 967 million reads and 191 Gb of sequence were produced, using Illumina sequencing. Mapping the reads in the related genome of the wild diploid Fragaria vesca revealed differences between the achene and receptacle development program, and reinforced the role played by ethylene in the ripening receptacle. For the strawberry transcriptome assembly, a de novo strategy was followed, generating separate assemblies for each of the ten tissues and stages sampled. The Trinity program was used for these assemblies, resulting in over 1.4 M isoforms. Filtering by a threshold of 0.3 FPKM, and doing Blastx (E-value < 1 e-30) against the UniProt database of plants reduced the number to 472,476 isoforms. Their assembly with the MIRA program (90% homology) resulted in 26,087 contigs. From these, 91.34 percent showed high homology to Fragaria vesca genes and 87.30 percent Fragaria iinumae (BlastN E-value < 1 e-100). Mapping back the reads on the MIRA contigs identified polymorphisms at nucleotide level, using FREEBAYES, as well as estimate their relative abundance in each sample

    Spinning Gland Transcriptomics from Two Main Clades of Spiders (Order: Araneae) - Insights on Their Molecular, Anatomical and Behavioral Evolution

    Get PDF
    Characterized by distinctive evolutionary adaptations, spiders provide a comprehensive system for evolutionary and developmental studies of anatomical organs, including silk and venom production. Here we performed cDNA sequencing using massively parallel sequencers (454 GS-FLX Titanium) to generate ∼80,000 reads from the spinning gland of Actinopus spp. (infraorder: Mygalomorphae) and Gasteracantha cancriformis (infraorder: Araneomorphae, Orbiculariae clade). Actinopus spp. retains primitive characteristics on web usage and presents a single undifferentiated spinning gland while the orbiculariae spiders have seven differentiated spinning glands and complex patterns of web usage. MIRA, Celera Assembler and CAP3 software were used to cluster NGS reads for each spider. CAP3 unigenes passed through a pipeline for automatic annotation, classification by biological function, and comparative transcriptomics. Genes related to spider silks were manually curated and analyzed. Although a single spidroin gene family was found in Actinopus spp., a vast repertoire of specialized spider silk proteins was encountered in orbiculariae. Astacin-like metalloproteases (meprin subfamily) were shown to be some of the most sampled unigenes and duplicated gene families in G. cancriformis since its evolutionary split from mygalomorphs. Our results confirm that the evolution of the molecular repertoire of silk proteins was accompanied by the (i) anatomical differentiation of spinning glands and (ii) behavioral complexification in the web usage. Finally, a phylogenetic tree was constructed to cluster most of the known spidroins in gene clades. This is the first large-scale, multi-organism transcriptome for spider spinning glands and a first step into a broad understanding of spider web systems biology and evolution

    Balanced gene losses, duplications and intensive rearrangements led to an unusual regularly sized genome in Arbutus unedo chloroplasts

    Get PDF
    Completely sequenced plastomes provide a valuable source of information about the duplication, loss, and transfer events of chloroplast genes and phylogenetic data for resolving relationships among major groups of plants. Moreover, they can also be useful for exploiting chloroplast genetic engineering technology. Ericales account for approximately six per cent of eudicot diversity with 11,545 species from which only three complete plastome sequences are currently available. With the aim of increasing the number of ericalean complete plastome sequences, and to open new perspectives in understanding Mediterranean plant adaptations, a genomic study on the basis of the complete chloroplast genome sequencing of Arbutus unedo and an updated phylogenomic analysis of Asteridae was implemented. The chloroplast genome of A. unedo shows extensive rearrangements but a medium size (150,897 nt) in comparison to most of angiosperms. A number of remarkable distinct features characterize the plastome of A. unedo: five-fold dismissing of the SSC region in relation to most angiosperms; complete loss or pseudogenization of a number of essential genes; duplication of the ndhH-D operon and its location within the two IRs; presence of large tandem repeats located near highly re-arranged regions and pseudogenes. All these features outline the primary evolutionary split between Ericaceae and other ericalean families. The newly sequenced plastome of A. unedo with the available asterid sequences allowed the resolution of some uncertainties in previous phylogenies of Asteridae

    Characterization of the Viral Microbiome in Patients with Severe Lower Respiratory Tract Infections, Using Metagenomic Sequencing

    Get PDF
    The human respiratory tract is heavily exposed to microorganisms. Viral respiratory tract pathogens, like RSV, influenza and rhinoviruses cause major morbidity and mortality from respiratory tract disease. Furthermore, as viruses have limited means of transmission, viruses that cause pathogenicity in other tissues may be transmitted through the respiratory tract. It is therefore important to chart the human virome in this compartment. We have studied nasopharyngeal aspirate samples submitted to the Karolinska University Laboratory, Stockholm, Sweden from March 2004 to May 2005 for diagnosis of respiratory tract infections. We have used a metagenomic sequencing strategy to characterize viruses, as this provides the most unbiased view of the samples. Virus enrichment followed by 454 sequencing resulted in totally 703,790 reads and 110,931 of these were found to be of viral origin by using an automated classification pipeline. The snapshot of the respiratory tract virome of these 210 patients revealed 39 species and many more strains of viruses. Most of the viral sequences were classified into one of three major families; Paramyxoviridae, Picornaviridae or Orthomyxoviridae. The study also identified one novel type of Rhinovirus C, and identified a number of previously undescribed viral genetic fragments of unknown origin
    corecore