38 research outputs found

    Tobacco Smoke Mediated Induction of Sinonasal Microbial Biofilms

    Get PDF
    Cigarette smokers and those exposed to second hand smoke are more susceptible to life threatening infection than non-smokers. While much is known about the devastating effect tobacco exposure has on the human body, less is known about the effect of tobacco smoke on the commensal and commonly found pathogenic bacteria of the human respiratory tract, or human respiratory tract microbiome. Chronic rhinosinusitis (CRS) is a common medical complaint, affecting 16% of the US population with an estimated aggregated cost of $6 billion annually. Epidemiologic studies demonstrate a correlation between tobacco smoke exposure and rhinosinusitis. Although a common cause of CRS has not been defined, bacterial presence within the nasal and paranasal sinuses is assumed to be contributory. Here we demonstrate that repetitive tobacco smoke exposure induces biofilm formation in a diverse set of bacteria isolated from the sinonasal cavities of patients with CRS. Additionally, bacteria isolated from patients with tobacco smoke exposure demonstrate robust in vitro biofilm formation when challenged with tobacco smoke compared to those isolated from smoke naïve patients. Lastly, bacteria from smoke exposed patients can revert to a non-biofilm phenotype when grown in the absence of tobacco smoke. These observations support the hypothesis that tobacco exposure induces sinonasal biofilm formation, thereby contributing to the conversion of a transient and medically treatable infection to a persistent and therapeutically recalcitrant condition

    Pharmacokinetic drug interactions of antimicrobial drugs:a systematic review on oxazolidinones, rifamycines, macrolides, fluoroquinolones, and Beta-lactams

    Get PDF
    Like any other drug, antimicrobial drugs are prone to pharmacokinetic drug interactions. These drug interactions are a major concern in clinical practice as they may have an effect on efficacy and toxicity. This article provides an overview of all published pharmacokinetic studies on drug interactions of the commonly prescribed antimicrobial drugs oxazolidinones, rifamycines, macrolides, fluoroquinolones, and beta-lactams, focusing on systematic research. We describe drug-food and drug-drug interaction studies in humans, affecting antimicrobial drugs as well as concomitantly administered drugs. Since knowledge about mechanisms is of paramount importance for adequate management of drug interactions, the most plausible underlying mechanism of the drug interaction is provided when available. This overview can be used in daily practice to support the management of pharmacokinetic drug interactions of antimicrobial drugs

    Establishing a clinical pharmacology fellowship program for physicians, pharmacists, and pharmacologists: a newly accredited interdisciplinary training program at the Ohio State University

    No full text
    Joseph P Kitzmiller,1,4 Mitch A Phelps,2 Marjorie V Neidecker,3 Glen Apseloff41Center for Pharmacogenomics, Colleges of Medicine and of Engineering, The Ohio State University Medical Center, 2Colleges of Pharmacy and Medicine, Pharmacoanalytic Shared Resources Laboratory, The Ohio State University, 3Colleges of Medicine, Nursing, and Pharmacy, The Ohio State University, 4Department of Pharmacology, The Ohio State University College of Medicine, Columbus, OH, USAAbstract: Studying the effect of drugs on humans, clinical pharmacologists play an essential role in many academic medical and research teams, within the pharmaceutical industry and as members of government regulatory entities. Clinical pharmacology fellowship training programs should be multidisciplinary and adaptable, and should combine didactics, applied learning, independent study, and one-on-one instruction. This article describes a recently developed 2 year clinical pharmacology fellowship program – one of only nine accredited by the American Board of Clinical Pharmacology – that is an integrative, multi faceted, adaptable method for training physicians, pharmacists, and scientists for leadership roles in the pharmaceutical industry, in academia, or with regulatory or accreditation agencies. The purpose of this article is to provide information for academic clinicians and researchers interested in designing a similar program, for professionals in the field of clinical pharmacology who are already affiliated with a fellowship program and may benefit from supplemental information, and for clinical researchers interested in clinical pharmacology who may not be aware that such training opportunities exist. This article provides the details of a recently accredited program, including design, implementation, accreditation, trainee success, and future directions.Keywords: clinical pharmacology education, clinical pharmacology fellowshi

    Immune Agranulocytosis and Clarithromycin

    No full text
    corecore