69 research outputs found

    Antinuclear antibody testing in obstetric patients

    Get PDF
    Objectives. To assess possible associations between the presence of antinuclear antibodies (ANAs) and pregnancy outcome in order to determine the significance of this test in obstetric practice.Methods. A case-control study was performed on 408 patients admitted to an obstetric high care unit and on whom ANA testing was consecutively performed. The study group consisted of 46 patients who tested positive for ANAs and a control group of 92 patients who tested negative for ANAs. In addition to demographic data, indications for admission and pregnancy outcome were compared between the two groups.                                Results. Of the 46 patients with a positive ANA result, 28 had an antinuclear pattern, 13 an anticytoplasmic pattern and 5 an antinuclear and an anticytoplasmic pattern. No significant differences were observed between the two groups (ANApositive and negative) with regard to demographic data, indication for admission, clinical and laboratory data, and pregnancy outcome. The patients were also tested for anticardiolipin antibodies, and significantly more patients with severe pre-eclampsia tested positive (24% versus 4.7%, p = 0.01). No difference in HIV status and presence of autoantibodies was found between the two groups.Conclusion. The presence of ANAs was not associated with adverse pregnancy outcome. Therefore routine patient testing for ANAs in an obstetric high-care unit is not recommended

    Antinuclear antibody testing in obstetric patients

    Get PDF

    Plasma Protein Profiling Reveals Protein Clusters Related to BMI and Insulin Levels in Middle-Aged Overweight Subjects

    Get PDF
    Biomarkers that allow detection of the onset of disease are of high interest since early detection would allow intervening with lifestyle and nutritional changes before the disease is manifested and pharmacological therapy is required. Our study aimed to improve the phenotypic characterization of overweight but apparently healthy subjects and to identify new candidate profiles for early biomarkers of obesity-related diseases such as cardiovascular disease and type 2 diabetes

    Effect of energy restriction and physical exercise intervention on phenotypic flexibility as examined by transcriptomics analyses of mRNA from adipose tissue and whole body magnetic resonance imaging.

    Get PDF
    Overweight and obesity lead to changes in adipose tissue such as inflammation and reduced insulin sensitivity. The aim of this study was to assess how altered energy balance by reduced food intake or enhanced physical activity affect these processes. We studied sedentary subjects with overweight/obesity in two intervention studies, each lasting 12 weeks affecting energy balance either by energy restriction (~20% reduced intake of energy from food) in one group, or by enhanced energy expenditure due to physical exercise (combined endurance- and strength-training) in the other group. We monitored mRNA expression by microarray and mRNA sequencing from adipose tissue biopsies. We also measured several plasma parameters as well as fat distribution with magnetic resonance imaging and spectroscopy. Comparison of microarray and mRNA sequencing showed strong correlations, which were also confirmed using RT-PCR In the energy restricted subjects (body weight reduced by 5% during a 12 weeks intervention), there were clear signs of enhanced lipolysis as monitored by mRNA in adipose tissue as well as plasma concentration of free-fatty acids. This increase was strongly related to increased expression of markers for M1-like macrophages in adipose tissue. In the exercising subjects (glucose infusion rate increased by 29% during a 12-week intervention), there was a marked reduction in the expression of markers of M2-like macrophages and T cells, suggesting that physical exercise was especially important for reducing inflammation in adipose tissue with insignificant reduction in total body weight. Our data indicate that energy restriction and physical exercise affect energy-related pathways as well as inflammatory processes in different ways, probably related to macrophages in adipose tissue

    Differences in genome-wide gene expression response in peripheral blood mononuclear cells between young and old men upon caloric restriction

    Get PDF
    Background: Caloric restriction (CR) is considered to increase lifespan and to prevent various age-related diseases in different nonhuman organisms. Only a limited number of CR studies have been performed on humans, and results put CR as a beneficial tool to decrease risk factors in several age-related diseases. The question remains at what age CR should be implemented to be most effective with respect to healthy aging. The aim of our study was to elucidate the role of age in the transcriptional response to a completely controlled 30 % CR diet on immune cells, as immune response is affected during aging. Ten healthy young men, aged 20–28, and nine healthy old men, aged 64–85, were subjected to a 2-week weight maintenance diet, followed by 3 weeks of 30 % CR. Before and after 30 % CR, the whole genome gene expression in peripheral blood mononuclear cells (PBMCs) was assessed. Results: Expression of 554 genes showed a different response between young and old men upon CR. Gene set enrichment analysis revealed a downregulation of gene sets involved in the immune response in young but not in old men. At baseline, immune response-related genes were higher expressed in old compared to young men. Upstream regulator analyses revealed that most potential regulators were controlling the immune response. Conclusions: Based on the gene expression data, we theorise that a short period of CR is not effective in old men regarding immune-related pathways while it is effective in young men

    Evaluation of multiple variate selection methods from a biological perspective: a nutrigenomics case study

    Get PDF
    Genomics-based technologies produce large amounts of data. To interpret the results and identify the most important variates related to phenotypes of interest, various multivariate regression and variate selection methods are used. Although inspected for statistical performance, the relevance of multivariate models in interpreting biological data sets often remains elusive. We compare various multivariate regression and variate selection methods applied to a nutrigenomics data set in terms of performance, utility and biological interpretability. The studied data set comprised hepatic transcriptome (10,072 predictor variates) and plasma protein concentrations [2 dependent variates: Leptin (LEP) and Tissue inhibitor of metalloproteinase 1 (TIMP-1)] collected during a high-fat diet study in ApoE3Leiden mice. The multivariate regression methods used were: partial least squares “PLS”; a genetic algorithm-based multiple linear regression, “GA-MLR”; two least-angle shrinkage methods, “LASSO” and “ELASTIC NET”; and a variant of PLS that uses covariance-based variate selection, “CovProc.” Two methods of ranking the genes for Gene Set Enrichment Analysis (GSEA) were also investigated: either by their correlation with the protein data or by the stability of the PLS regression coefficients. The regression methods performed similarly, with CovProc and GA performing the best and worst, respectively (R-squared values based on “double cross-validation” predictions of 0.762 and 0.451 for LEP; and 0.701 and 0.482 for TIMP-1). CovProc, LASSO and ELASTIC NET all produced parsimonious regression models and consistently identified small subsets of variates, with high commonality between the methods. Comparison of the gene ranking approaches found a high degree of agreement, with PLS-based ranking finding fewer significant gene sets. We recommend the use of CovProc for variate selection, in tandem with univariate methods, and the use of correlation-based ranking for GSEA-like pathway analysis methods

    A risk assessment-driven quantitative comparison of gene expression profiles in PBMCs and white adipose tissue of humans and rats after isoflavone supplementation

    Get PDF
    Quantitative insight into species differences in risk assessment is expected to reduce uncertainty and variability related to extrapolation from animals to humans. This paper explores quantification and comparison of gene expression data between tissues and species from intervention studies with isoflavones. Gene expression data from peripheral blood mononuclear cells (PBMCs) and white adipose tissue (WAT) after 8wk isoflavone interventions in postmenopausal women and ovariectomized F344 rats were used. A multivariate model was applied to quantify gene expression effects, which showed 3–5-fold larger effect sizes in rats compared to humans. For estrogen responsive genes, a 5-fold greater effect size was found in rats than in humans. For these genes, intertissue correlations (r = 0.23 in humans, r = 0.22 in rats) and interspecies correlation in WAT (r = 0.31) were statistically significant. Effect sizes, intertissue and interspecies correlations for some groups of genes within energy metabolism, inflammation and cell cycle processes were significant, but weak. Quantification of gene expression data reveals differences between rats and women in effect magnitude after isoflavone supplementation. For risk assessment, quantification of gene expression data and subsequent calculation of intertissue and interspecies correlations within biological pathways will further strengthen knowledge on comparability between tissues and species

    Whole Grain Wheat Consumption Affects Postprandial Inflammatory Response in a Randomized Controlled Trial in Overweight and Obese Adults with Mild Hypercholesterolemia in the Graandioos Study

    Get PDF
    BACKGROUND: Whole grain wheat (WGW) consumption is associated with health benefits in observational studies. However, WGW randomized controlled trial (RCT) studies show mixed effects. OBJECTIVES: The health impact of WGW consumption was investigated by quantification of the body's resilience, which was defined as the "ability to adapt to a standardized challenge." METHODS: A double-blind RCT was performed with overweight and obese (BMI: 25-35 kg/m2) men (n = 19) and postmenopausal women (n = 31) aged 45-70 y, with mildly elevated plasma total cholesterol (>5 mmol/L), who were randomly assigned to either 12-wk WGW (98 g/d) or refined wheat (RW). Before and after the intervention a standardized mixed-meal challenge was performed. Plasma samples were taken after overnight fasting and postprandially (30, 60, 120, and 240 min). Thirty-one biomarkers were quantified focusing on metabolism, liver, cardiovascular health, and inflammation. Linear mixed-models evaluated fasting compared with postprandial intervention effects. Health space models were used to evaluate intervention effects as composite markers representing resilience of inflammation, liver, and metabolism. RESULTS: Postprandial biomarker changes related to liver showed decreased alanine aminotransferase by WGW (P = 0.03) and increased β-hydroxybutyrate (P = 0.001) response in RW. Postprandial changes related to inflammation showed increased C-reactive protein (P = 0.001), IL-6 (P = 0.02), IL-8 (P = 0.007), and decreased IL-1B (P = 0.0002) in RW and decreased C-reactive protein (P < 0.0001), serum amyloid A (P < 0.0001), IL-8 (P = 0.02), and IL-10 (P < 0.0001) in WGW. Health space visualization demonstrated diminished inflammatory (P < 0.01) and liver resilience (P < 0.01) by RW, whereas liver resilience was rejuvenated by WGW (P < 0.05). CONCLUSIONS: Twelve-week 98 g/d WGW consumption can promote liver and inflammatory resilience in overweight and obese subjects with mildly elevated plasma cholesterol. The health space approach appeared appropriate to evaluate intervention effects as composite markers. This trial was registered at www.clinicaltrials.gov as NCT02385149.</p

    Mass-spectrometry-based metabolomics: limitations and recommendations for future progress with particular focus on nutrition research

    Get PDF
    Mass spectrometry (MS) techniques, because of their sensitivity and selectivity, have become methods of choice to characterize the human metabolome and MS-based metabolomics is increasingly used to characterize the complex metabolic effects of nutrients or foods. However progress is still hampered by many unsolved problems and most notably the lack of well established and standardized methods or procedures, and the difficulties still met in the identification of the metabolites influenced by a given nutritional intervention. The purpose of this paper is to review the main obstacles limiting progress and to make recommendations to overcome them. Propositions are made to improve the mode of collection and preparation of biological samples, the coverage and quality of mass spectrometry analyses, the extraction and exploitation of the raw data, the identification of the metabolites and the biological interpretation of the results

    The impact of protein quantity during energy restriction on genome-wide gene expression analysis in adipose tissue of obese humans

    Get PDF
    BACKGROUND: Overweight and obesity is a growing health problem worldwide. The most effective strategy to reduce weight is energy restriction (ER). ER has been shown to be beneficial in disease prevention and it reduces chronic inflammation. Recent studies suggest that reducing the protein quantity of a diet contributes to the beneficial effects by ER. The organ most extensively affected during ER is white adipose tissue (WAT). OBJECTIVE: The first objective was to assess changes in gene expression between a high protein diet and a normal protein diet during ER. Secondly, the total effect of ER on changes in gene expression in WAT was assessed. METHODS: In a parallel double-blinded controlled study, overweight older participants adhered to a 25% ER diet, either combined with high protein intake (HP-ER, 1.7 g/kg per day), or with normal protein intake (NP-ER, 0.9 g/kg per 40 day) for 12 weeks. From 10 HP-ER participants and 12 NP-ER participants subcutaneous WAT biopsies were collected before and after the diet intervention. Adipose tissue was used to isolate total RNA and to evaluate whole genome gene expression changes upon a HP-ER and NP-ER diet. RESULTS: A different gene expression response between HP-ER and NP-ER was observed for 530 genes. After NP-ER a downregulation in expression of genes linked to immune cell infiltration, adaptive immune response, and inflammasome was found whereas no such effect was found after HP-ER. HP-ER resulted in upregulation in expression of genes linked to cell cycle, GPCR signalling, olfactory signalling and nitrogen metabolism. Upon 25% ER, gene sets related to energy metabolism and immune response were decreased. CONCLUSIONS: Based on gen e expression changes, we concluded that consumption of normal protein quantity compared to high protein quantity during ER has a more beneficial effect on inflammation-related gene expression in WAT
    corecore