209 research outputs found

    Circadian Rhythms and the Induction of Flowering in Sinapis alba

    Full text link

    Repression of Floral Meristem Fate Is Crucial in Shaping Tomato Inflorescence

    Get PDF
    Tomato is an important crop and hence there is a great interest in understanding the genetic basis of its flowering. Several genes have been identified by mutations and we constructed a set of novel double mutants to understand how these genes interact to shape the inflorescence. It was previously suggested that the branching of the tomato inflorescence depends on the gradual transition from inflorescence meristem (IM) to flower meristem (FM): the extension of this time window allows IM to branch, as seen in the compound inflorescence (s) and falsiflora (fa) mutants that are impaired in FM maturation. We report here that JOINTLESS (J), which encodes a MADS-box protein of the same clade than SHORT VEGETATIVE PHASE (SVP) and AGAMOUS LIKE 24 (AGL24) in Arabidopsis, interferes with this timing and delays FM maturation, therefore promoting IM fate. This was inferred from the fact that j mutation suppresses the high branching inflorescence phenotype of s and fa mutants and was further supported by the expression pattern of J, which is expressed more strongly in IM than in FM. Most interestingly, FA - the orthologue of the Arabidopsis LEAFY (LFY) gene - shows the complementary expression pattern and is more active in FM than in IM. Loss of J function causes premature termination of flower formation in the inflorescence and its reversion to a vegetative program. This phenotype is enhanced in the absence of systemic florigenic protein, encoded by the SINGLE FLOWER TRUSS (SFT) gene, the tomato orthologue of FLOWERING LOCUS T (FT). These results suggest that the formation of an inflorescence in tomato requires the interaction of J and a target of SFT in the meristem, for repressing FA activity and FM fate in the IM

    Mast Cells Express 11 beta-hydroxysteroid Dehydrogenase Type 1: A Role in Restraining Mast Cell Degranulation:a role in restraining mast cell degranulation

    Get PDF
    Mast cells are key initiators of allergic, anaphylactic and inflammatory reactions, producing mediators that affect vascular permeability, angiogenesis and fibrosis. Glucocorticoid pharmacotherapy reduces mast cell number, maturation and activation but effects at physiological levels are unknown. Within cells, glucocorticoid concentration is modulated by the 11β-hydroxysteroid dehydrogenases (11β-HSDs). Here we show expression and activity of 11β-HSD1, but not 11β-HSD2, in mouse mast cells with 11β-HSD activity only in the keto-reductase direction, regenerating active glucocorticoids (cortisol, corticosterone) from inert substrates (cortisone, 11-dehydrocorticosterone). Mast cells from 11β-HSD1-deficient mice show ultrastructural evidence of increased activation, including piecemeal degranulation and have a reduced threshold for IgG immune complex-induced mast cell degranulation. Consistent with reduced intracellular glucocorticoid action in mast cells, levels of carboxypeptidase A3 mRNA, a glucocorticoid-inducible mast cell-specific transcript, are lower in peritoneal cells from 11β-HSD1-deficient than control mice. These findings suggest that 11β-HSD1-generated glucocorticoids may tonically restrain mast cell degranulation, potentially influencing allergic, anaphylactic and inflammatory responses

    Applied aspects of pineapple flowering

    Full text link

    Differential response of human basophil activation markers: a multi-parameter flow cytometry approach

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Basophils are circulating cells involved in hypersensitivity reactions and allergy but many aspects of their activation, including the sensitivity to external triggering factors and the molecular aspects of cell responses, are still to be focused. In this context, polychromatic flow cytometry (PFC) is a proper tool to investigate basophil function, as it allows to distinguish the expression of several membrane markers upon activation in multiple experimental conditions. </p> <p>Methods</p> <p>Cell suspensions were prepared from leukocyte buffy coat of K2-EDTA anticoagulated blood specimens; about 1500-2500 cellular events for each tested sample, gated in the lymphocyte CD45dim area and then electronically purified as HLADRnon expressing/CD123bright, were identified as basophilic cells. Basophil activation with fMLP, anti-IgE and calcium ionophore A23187 was evaluated by studying up-regulation of the indicated membrane markers with a two-laser six-color PFC protocol.</p> <p>Results</p> <p>Following stimulation, CD63, CD13, CD45 and the ectoenzyme CD203c up-regulated their membrane expression, while CD69 did not; CD63 expression occurred immediately (within 60 sec) but only in a minority of basophils, even at optimal agonist doses (in 33% and 14% of basophils, following fMLP and anti-IgE stimulation respectively). CD203c up-regulation occurred in the whole basophil population, even in CD63non expressing cells. Dose-dependence curves revealed CD203c as a more sensitive marker than CD63, in response to fMLP but not in response to anti-IgE and to calcium ionophore.</p> <p>Conclusion</p> <p>Use of polychromatic flow cytometry allowed efficient basophil electronic purification and identification of different behaviors of the major activation markers. The simultaneous use of two markers of activation and careful choice of activator are essential steps for reliable assessment of human basophil functions.</p

    A novel IgE antibody targeting the prostate-specific antigen as a potential prostate cancer therapy

    Get PDF
    Prostate cancer (PCa) is the second leading cause of cancer deaths in men in the United States. The prostate-specific antigen (PSA), often found at high levels in the serum of PCa patients, has been used as a marker for PCa detection and as a target of immunotherapy. The murine IgG1 monoclonal antibody AR47.47, specific for human PSA, has been shown to enhance antigen presentation by human dendritic cells and induce both CD4 andCD8 T-cell activation when complexed with PSA. In this study, we explored the properties of a novel mouse/human chimeric anti-PSA IgE containing the variable regions of AR47.47 as a potential therapy for PCa. Our goal was to take advantage of the unique properties of IgE in order to trigger immune activation against PCa.Fil: Daniels-Wells, Tracy R. University of California. David Geffen School of Medicine. Department of Surgery. Division of Surgical Oncology; Estados Unidos de América;Fil: Helguera, Gustavo Fernando. Universidad de Buenos Aires. Facultad de Farmacia y Bioquimica. Departamento de Tecnologia Farmaceutica; Argentina; University of California. David Geffen School of Medicine. Department of Surgery. Division of Surgical Oncology; Estados Unidos de América;Fil: Leuchter, Richard K. University of California. David Geffen School of Medicine. Department of Surgery. Division of Surgical Oncology; Estados Unidos de América;Fil: Quintero, Rafael. University of California. David Geffen School of Medicine. Department of Surgery. Division of Surgical Oncology; Estados Unidos de América;Fil: Kozman, Maggie. University of California. David Geffen School of Medicine. Department of Surgery. Division of Surgical Oncology; Estados Unidos de América;Fil: Rodríguez, José A.. University of California. David Geffen School of Medicine. Department of Surgery. Division of Surgical Oncology; Estados Unidos de América; University of California. The Molecular Biology Institute; Estados Unidos de América;Fil: Ortiz-Sánchez, E. University of California. David Geffen School of Medicine. Department of Surgery. Division of Surgical Oncology; Estados Unidos de América; Biomedical Research in Cancer. Basic Research Division. National Institute of Cancerology; Mexico.;Fil: Martínez-Maza, Otonel. University of California. David Geffen School of Medicine. Department of Surgery. Division of Surgical Oncology; Estados Unidos de América;Fil: Schultes, Brigit C.. Advanced Immune Therapeutics; Estados Unidos de América;Fil: Nicodemus Christopher. Advanced Immune Therapeutics; Estados Unidos de América;Fil: Penichet, Manuel. University of California. David Geffen School of Medicine. Department of Surgery. Division of Surgical Oncology; Estados Unidos de América; University of California. The Molecular Biology Institute; Estados Unidos de América

    Targeting HER2/neu with a fully human IgE to harness the allergic reaction against cancer cells

    Get PDF
    Breast and ovarian cancer are two of the leading causes of cancer deaths among women in the United States. Overexpression of the HER2/neu oncoprotein has been reported in patients affected with breast and ovarian cancers, and is associated with poor prognosis. To develop a novel targeted therapy for HER2/neu expressing tumors, we have constructed a fully human IgE with the variable regions of the scFv C6MH3-B1 specific for HER2/neu. This antibody was expressed in murine myeloma cells and was properly assembled and secreted. The Fc region of this antibody triggers in vitro degranulation of rat basophilic cells expressing human FcεRI (RBL SX-38) in the presence of murine mammary carcinoma cells that express human HER2/neu (D2F2/E2), but not the shed (soluble) antigen (ECDHER2) alone. This IgE is also capable of inducing passive cutaneous anaphylaxis in a human FcεRIα transgenic mouse model, in the presence of a cross-linking antibody, but not in the presence of soluble ECDHER2. Additionally, IgE enhances antigen presentation in human dendritic cells and facilitates cross-priming, suggesting that the antibody is able to stimulate a secondary T-cell anti-tumor response. Furthermore, we show that this IgE significantly prolongs survival of human FcεRIα transgenic mice bearing D2F2/E2 tumors. We also report that the anti-HER2/neu IgE is well tolerated in a preliminary study conducted in Macaca fascicularis (cynomolgus) monkeys. In summary, our results suggest that this IgE should be further explored as a potential therapeutic against HER2/neu overexpressing tumors, such as breast and ovarian cancers.Fil: Daniels, Tracy R.. University of California at Los Angeles; Estados UnidosFil: Leuchter, Richard K.. University of California at Los Angeles; Estados UnidosFil: Quintero, Rafaela. University of California; Estados UnidosFil: Helguera, Gustavo Fernando. University of California at Los Angeles; Estados Unidos. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Rodríguez, José A.. University of California at Los Angeles; Estados UnidosFil: Martínez Maza, Otoniel. University of California at Los Angeles; Estados UnidosFil: Schultes, Birgit C.. Advanced Immune Therapeutics, Inc.; Estados Unidos. Momenta Pharmaceuticals, Inc.; Estados UnidosFil: Nicodemus, Christopher F.. Advanced Immune Therapeutics, Inc.; Estados UnidosFil: Penichet, Manuel L.. University of California at Los Angeles; Estados Unido

    Ancient, independent evolution and distinct molecular features of the novel human T-lymphotropic virus type 4

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Human T-lymphotropic virus type 4 (HTLV-4) is a new deltaretrovirus recently identified in a primate hunter in Cameroon. Limited sequence analysis previously showed that HTLV-4 may be distinct from HTLV-1, HTLV-2, and HTLV-3, and their simian counterparts, STLV-1, STLV-2, and STLV-3, respectively. Analysis of full-length genomes can provide basic information on the evolutionary history and replication and pathogenic potential of new viruses.</p> <p>Results</p> <p>We report here the first complete HTLV-4 sequence obtained by PCR-based genome walking using uncultured peripheral blood lymphocyte DNA from an HTLV-4-infected person. The HTLV-4(1863LE) genome is 8791-bp long and is equidistant from HTLV-1, HTLV-2, and HTLV-3 sharing only 62–71% nucleotide identity. HTLV-4 has a prototypic genomic structure with all enzymatic, regulatory, and structural proteins preserved. Like STLV-2, STLV-3, and HTLV-3, HTLV-4 is missing a third 21-bp transcription element found in the long terminal repeats of HTLV-1 and HTLV-2 but instead contains unique c-Myb and pre B-cell leukemic transcription factor binding sites. Like HTLV-2, the PDZ motif important for cellular signal transduction and transformation in HTLV-1 and HTLV-3 is missing in the C-terminus of the HTLV-4 Tax protein. A basic leucine zipper (b-ZIP) region located in the antisense strand of HTLV-1 and believed to play a role in viral replication and oncogenesis, was also found in the complementary strand of HTLV-4. Detailed phylogenetic analysis shows that HTLV-4 is clearly a monophyletic viral group. Dating using a relaxed molecular clock inferred that the most recent common ancestor of HTLV-4 and HTLV-2/STLV-2 occurred 49,800 to 378,000 years ago making this the oldest known PTLV lineage. Interestingly, this period coincides with the emergence of <it>Homo sapiens sapiens </it>during the Middle Pleistocene suggesting that early humans may have been susceptible hosts for the ancestral HTLV-4.</p> <p>Conclusion</p> <p>The inferred ancient origin of HTLV-4 coinciding with the appearance of <it>Homo sapiens</it>, the propensity of STLVs to cross-species into humans, the fact that HTLV-1 and -2 spread globally following migrations of ancient populations, all suggest that HTLV-4 may be prevalent. Expanded surveillance and clinical studies are needed to better define the epidemiology and public health importance of HTLV-4 infection.</p

    Characterization of tomato Cycling Dof Factors reveals conserved and new functions in the control of flowering time and abiotic stress responses

    Get PDF
    [EN] DNA binding with One Finger (DOF) transcription factors are involved in multiple aspects of plant growth and development but their precise roles in abiotic stress tolerance are largely unknown. Here we report a group of five tomato DOF genes, homologous to Arabidopsis Cycling DOF Factors (CDFs), that function as transcriptional regulators involved in responses to drought and salt stress and flowering-time control in a gene-specific manner. SlCDF15 are nuclear proteins that display specific binding with different affinities to canonical DNA target sequences and present diverse transcriptional activation capacities in vivo. SlCDF15 genes exhibited distinct diurnal expression patterns and were differentially induced in response to osmotic, salt, heat, and low-temperature stresses. Arabidopsis plants overexpressing SlCDF1 or SlCDF3 showed increased drought and salt tolerance. In addition, the expression of various stress-responsive genes, such as COR15, RD29A, and RD10, were differentially activated in the overexpressing lines. Interestingly, overexpression in Arabidopsis of SlCDF3 but not SlCDF1 promotes late flowering through modulation of the expression of flowering control genes such as CO and FT. Overall, our data connect SlCDFs to undescribed functions related to abiotic stress tolerance and flowering time through the regulation of specific target genes and an increase in particular metabolites.This work was supported by grants from Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA; project numbers: 2009-0004-C01, 2012-0008-C01), the Spanish Ministry of Science and Innovation (project number: BIO2010-14871), and the MERIT Project (FP7 ITN2010-264474). ARC was supported by a pre-doctoral fellowship from the INIA. The authors would like to thank Mar Gonzalez and Victor Carrasco for technical assistance and Dr Pablo Gonzalez-Melendi for technical handling of the confocal microscope. We also thank Eugenio Grau for technical assistance with RT-PCR analyses.Corrales, A.; González Nebauer, S.; Carrillo, L.; Fernández Nohales, P.; Marques Signes, J.; Renau Morata, B.; Granell, A.... (2014). Characterization of tomato Cycling Dof Factors reveals conserved and new functions in the control of flowering time and abiotic stress responses. Journal of Experimental Botany. 65(4):995-1012. https://doi.org/10.1093/jxb/ert451S9951012654AbuQamar, S., Luo, H., Laluk, K., Mickelbart, M. V., & Mengiste, T. (2009). Crosstalk between biotic and abiotic stress responses in tomato is mediated by theAIM1transcription factor. The Plant Journal, 58(2), 347-360. doi:10.1111/j.1365-313x.2008.03783.xAlonso, R., Oñate-Sánchez, L., Weltmeier, F., Ehlert, A., Diaz, I., Dietrich, K., … Dröge-Laser, W. (2009). A Pivotal Role of the Basic Leucine Zipper Transcription Factor bZIP53 in the Regulation of Arabidopsis Seed Maturation Gene Expression Based on Heterodimerization and Protein Complex Formation. The Plant Cell, 21(6), 1747-1761. doi:10.1105/tpc.108.062968Altschul, S. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25(17), 3389-3402. doi:10.1093/nar/25.17.3389An, H. (2004). CONSTANS acts in the phloem to regulate a systemic signal that induces photoperiodic flowering of Arabidopsis. Development, 131(15), 3615-3626. doi:10.1242/dev.01231Artimo, P., Jonnalagedda, M., Arnold, K., Baratin, D., Csardi, G., de Castro, E., … Stockinger, H. (2012). ExPASy: SIB bioinformatics resource portal. Nucleic Acids Research, 40(W1), W597-W603. doi:10.1093/nar/gks400Atherton, J. G., & Harris, G. P. (1986). Flowering. The Tomato Crop, 167-200. doi:10.1007/978-94-009-3137-4_4Bailey, T. L., Boden, M., Buske, F. A., Frith, M., Grant, C. E., Clementi, L., … Noble, W. S. (2009). MEME SUITE: tools for motif discovery and searching. Nucleic Acids Research, 37(Web Server), W202-W208. doi:10.1093/nar/gkp335Ben-Naim, O., Eshed, R., Parnis, A., Teper-Bamnolker, P., Shalit, A., Coupland, G., … Lifschitz, E. (2006). The CCAAT binding factor can mediate interactions between CONSTANS-like proteins and DNA. The Plant Journal, 46(3), 462-476. doi:10.1111/j.1365-313x.2006.02706.xBEUVE, N., RISPAIL, N., LAINE, P., CLIQUET, J.-B., OURRY, A., & LE DEUNFF, E. (2004). Putative role of gamma -aminobutyric acid (GABA) as a long-distance signal in up-regulation of nitrate uptake in Brassica napus L. Plant, Cell and Environment, 27(8), 1035-1046. doi:10.1111/j.1365-3040.2004.01208.xBlumwald, E. (2000). Sodium transport and salt tolerance in plants. Current Opinion in Cell Biology, 12(4), 431-434. doi:10.1016/s0955-0674(00)00112-5Bombarely, A., Menda, N., Tecle, I. Y., Buels, R. M., Strickler, S., Fischer-York, T., … Mueller, L. A. (2010). The Sol Genomics Network (solgenomics.net): growing tomatoes using Perl. Nucleic Acids Research, 39(Database), D1149-D1155. doi:10.1093/nar/gkq866Bressan, R., Bohnert, H., & Zhu, J.-K. (2009). Abiotic Stress Tolerance: From Gene Discovery in Model Organisms to Crop Improvement. Molecular Plant, 2(1), 1-2. doi:10.1093/mp/ssn097Calvert, A. (1959). Effect of the Early Environment on the Development of Flowering in Tomato II. Light and Temperature Interactions. Journal of Horticultural Science, 34(3), 154-162. doi:10.1080/00221589.1959.11513954Carmel-Goren, L., Liu, Y. S., Lifschitz, E., & Zamir, D. (2003). TheSELF-PRUNINGgene family in tomato. Plant Molecular Biology, 52(6), 1215-1222. doi:10.1023/b:plan.0000004333.96451.11Chaves, M. M., Flexas, J., & Pinheiro, C. (2008). Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Annals of Botany, 103(4), 551-560. doi:10.1093/aob/mcn125Claussen, W. (2005). Proline as a measure of stress in tomato plants. Plant Science, 168(1), 241-248. doi:10.1016/j.plantsci.2004.07.039Clough, S. J., & Bent, A. F. (1998). Floral dip: a simplified method forAgrobacterium-mediated transformation ofArabidopsis thaliana. The Plant Journal, 16(6), 735-743. doi:10.1046/j.1365-313x.1998.00343.xCuartero, J., & Fernández-Muñoz, R. (1998). Tomato and salinity. Scientia Horticulturae, 78(1-4), 83-125. doi:10.1016/s0304-4238(98)00191-5Czechowski, T., Stitt, M., Altmann, T., Udvardi, M. K., & Scheible, W.-R. (2005). Genome-Wide Identification and Testing of Superior Reference Genes for Transcript Normalization in Arabidopsis. Plant Physiology, 139(1), 5-17. doi:10.1104/pp.105.063743Diaz, I., Vicente-Carbajosa, J., Abraham, Z., Martinez, M., Isabel-La Moneda, I., & Carbonero, P. (2002). The GAMYB protein from barley interacts with the DOF transcription factor BPBF and activates endosperm-specific genes during seed development. The Plant Journal, 29(4), 453-464. doi:10.1046/j.0960-7412.2001.01230.xDieleman, J. A., & Heuvelink, E. (1992). Factors affecting the number of leaves preceding the first inflorescence in the tomato. Journal of Horticultural Science, 67(1), 1-10. doi:10.1080/00221589.1992.11516214Farrant, J. M., & Moore, J. P. (2011). Programming desiccation-tolerance: from plants to seeds to resurrection plants. Current Opinion in Plant Biology, 14(3), 340-345. doi:10.1016/j.pbi.2011.03.018Fiehn, O., Kopka, J., Trethewey, R. N., & Willmitzer, L. (2000). Identification of Uncommon Plant Metabolites Based on Calculation of Elemental Compositions Using Gas Chromatography and Quadrupole Mass Spectrometry. Analytical Chemistry, 72(15), 3573-3580. doi:10.1021/ac991142iFornara, F., Panigrahi, K. C. S., Gissot, L., Sauerbrunn, N., Rühl, M., Jarillo, J. A., & Coupland, G. (2009). Arabidopsis DOF Transcription Factors Act Redundantly to Reduce CONSTANS Expression and Are Essential for a Photoperiodic Flowering Response. Developmental Cell, 17(1), 75-86. doi:10.1016/j.devcel.2009.06.015Gaquerel, E., Heiling, S., Schoettner, M., Zurek, G., & Baldwin, I. T. (2010). Development and Validation of a Liquid Chromatography−Electrospray Ionization−Time-of-Flight Mass Spectrometry Method for Induced Changes inNicotiana attenuataLeaves during Simulated Herbivory. Journal of Agricultural and Food Chemistry, 58(17), 9418-9427. doi:10.1021/jf1017737Gardiner, J., Sherr, I., & Scarpella, E. (2010). Expression of DOF genes identifies early stages of vascular development in Arabidopsis leaves. The International Journal of Developmental Biology, 54(8-9), 1389-1396. doi:10.1387/ijdb.093006jgGong, P., Zhang, J., Li, H., Yang, C., Zhang, C., Zhang, X., … Ye, Z. (2010). Transcriptional profiles of drought-responsive genes in modulating transcription signal transduction, and biochemical pathways in tomato. Journal of Experimental Botany, 61(13), 3563-3575. doi:10.1093/jxb/erq167Goodstein, D. M., Shu, S., Howson, R., Neupane, R., Hayes, R. D., Fazo, J., … Rokhsar, D. S. (2011). Phytozome: a comparative platform for green plant genomics. Nucleic Acids Research, 40(D1), D1178-D1186. doi:10.1093/nar/gkr944Gualberti, G., Papi, M., Bellucci, L., Ricci, I., Bouchez, D., Camilleri, C., … Vittorioso, P. (2002). Mutations in the Dof Zinc Finger Genes DAG2 and DAG1 Influence with Opposite Effects the Germination of Arabidopsis Seeds. The Plant Cell, 14(6), 1253-1263. doi:10.1105/tpc.010491Guindon, S., & Gascuel, O. (2003). A Simple, Fast, and Accurate Algorithm to Estimate Large Phylogenies by Maximum Likelihood. Systematic Biology, 52(5), 696-704. doi:10.1080/10635150390235520Gullberg, J., Jonsson, P., Nordström, A., Sjöström, M., & Moritz, T. (2004). Design of experiments: an efficient strategy to identify factors influencing extraction and derivatization of Arabidopsis thaliana samples in metabolomic studies with gas chromatography/mass spectrometry. Analytical Biochemistry, 331(2), 283-295. doi:10.1016/j.ab.2004.04.037Guo, Y., Qin, G., Gu, H., & Qu, L.-J. (2009). Dof5.6/HCA2, a Dof Transcription Factor Gene, Regulates Interfascicular Cambium Formation and Vascular Tissue Development in Arabidopsis. The Plant Cell, 21(11), 3518-3534. doi:10.1105/tpc.108.064139Haupt-Herting, S., Klug, K., & Fock, H. P. (2001). A New Approach to Measure Gross CO2 Fluxes in Leaves. Gross CO2 Assimilation, Photorespiration, and Mitochondrial Respiration in the Light in Tomato under Drought Stress. Plant Physiology, 126(1), 388-396. doi:10.1104/pp.126.1.388Hernando-Amado, S., González-Calle, V., Carbonero, P., & Barrero-Sicilia, C. (2012). The family of DOF transcription factors in Brachypodium distachyon: phylogenetic comparison with rice and barley DOFs and expression profiling. BMC Plant Biology, 12(1), 202. doi:10.1186/1471-2229-12-202Hoekstra, F. A., Golovina, E. A., & Buitink, J. (2001). Mechanisms of plant desiccation tolerance. Trends in Plant Science, 6(9), 431-438. doi:10.1016/s1360-1385(01)02052-0Hoffman, N. E., Ko, K., Milkowski, D., & Pichersky, E. (1991). Isolation and characterization of tomato cDNA and genomic clones encoding the ubiquitin gene ubi3. Plant Molecular Biology, 17(6), 1189-1201. doi:10.1007/bf00028735Huang, Z., Zhang, Z., Zhang, X., Zhang, H., Huang, D., & Huang, R. (2004). Tomato TERF1 modulates ethylene response and enhances osmotic stress tolerance by activating expression of downstream genes. FEBS Letters, 573(1-3), 110-116. doi:10.1016/j.febslet.2004.07.064HUSSEY, G. (1963). Growth and Development in the Young Tomato: I. THE EFFECT OF TEMPERATURE AND LIGHT INTENSITY ON GROWTH OF THE SHOOT APEX AND LEAF PRIMORDIA. Journal of Experimental Botany, 14(2), 316-325. doi:10.1093/jxb/14.2.316Imaizumi, T. (2005). FKF1 F-Box Protein Mediates Cyclic Degradation of a Repressor of CONSTANS in Arabidopsis. Science, 309(5732), 293-297. doi:10.1126/science.1110586IWAMOTO, M., HIGO, K., & TAKANO, M. (2009). Circadian clock- and phytochrome-regulated Dof-like gene,Rdd1, is associated with grain size in rice. Plant, Cell & Environment, 32(5), 592-603. doi:10.1111/j.1365-3040.2009.01954.xJang, S., Marchal, V., Panigrahi, K. C. S., Wenkel, S., Soppe, W., Deng, X.-W., … Coupland, G. (2008). Arabidopsis COP1 shapes the temporal pattern of CO accumulation conferring a photoperiodic flowering response. The EMBO Journal, 27(8), 1277-1288. doi:10.1038/emboj.2008.68Jones, M. L. (2013). Mineral nutrient remobilization during corolla senescence in ethylene-sensitive and -insensitive flowers. AoB Plants, 5(0), plt023-plt023. doi:10.1093/aobpla/plt023Karimi, M., Depicker, A., & Hilson, P. (2007). Recombinational Cloning with Plant Gateway Vectors. Plant Physiology, 145(4), 1144-1154. doi:10.1104/pp.107.106989Kerepesi, I., & Galiba, G. (2000). Osmotic and Salt Stress-Induced Alteration in Soluble Carbohydrate Content in Wheat Seedlings. Crop Science, 40(2), 482. doi:10.2135/cropsci2000.402482xKinet, J. M. (1977). Effect of light conditions on the development of the inflorescence in tomato. Scientia Horticulturae, 6(1), 15-26. doi:10.1016/0304-4238(77)90074-7Kirby, J., & Kavanagh, T. A. (2002). NAN fusions: a synthetic sialidase reporter gene as a sensitive and versatile partner for GUS. The Plant Journal, 32(3), 391-400. doi:10.1046/j.1365-313x.2002.01422.xKloosterman, B., Abelenda, J. A., Gomez, M. del M. C., Oortwijn, M., de Boer, J. M., Kowitwanich, K., … Bachem, C. W. B. (2013). Naturally occurring allele diversity allows potato cultivation in northern latitudes. Nature, 495(7440), 246-250. doi:10.1038/nature11912Konishi, M., & Yanagisawa, S. (2007). Sequential activation of two Dof transcription factor gene promoters during vascular development in Arabidopsis thaliana. Plant Physiology and Biochemistry, 45(8), 623-629. doi:10.1016/j.plaphy.2007.05.001Krohn, N. M., Yanagisawa, S., & Grasser, K. D. (2002). Specificity of the Stimulatory Interaction between Chromosomal HMGB Proteins and the Transcription Factor Dof2 and Its Negative Regulation by Protein Kinase CK2-mediated Phosphorylation. Journal of Biological Chemistry, 277(36), 32438-32444. doi:10.1074/jbc.m203814200Kurai, T., Wakayama, M., Abiko, T., Yanagisawa, S., Aoki, N., & Ohsugi, R. (2011). Introduction of the ZmDof1 gene into rice enhances carbon and nitrogen assimilation under low-nitrogen conditions. Plant Biotechnology Journal, 9(8), 826-837. doi:10.1111/j.1467-7652.2011.00592.xKushwaha, H., Gupta, S., Singh, V. K., Rastogi, S., & Yadav, D. (2010). Genome wide identification of Dof transcription factor gene family in sorghum and its comparative phylogenetic analysis with rice and Arabidopsis. Molecular Biology Reports, 38(8), 5037-5053. doi:10.1007/s11033-010-0650-9Lakhssassi, N., Doblas, V. G., Rosado, A., del Valle, A. E., Posé, D., Jimenez, A. J., … Botella, M. A. (2012). The Arabidopsis TETRATRICOPEPTIDE THIOREDOXIN-LIKE Gene Family Is Required for Osmotic Stress Tolerance and Male Sporogenesis. Plant Physiology, 158(3), 1252-1266. doi:10.1104/pp.111.188920Lee, H. E., Shin, D., Park, S. R., Han, S.-E., Jeong, M.-J., Kwon, T.-R., … Byun, M.-O. (2007). Ethylene responsive element binding protein 1 (StEREBP1) from Solanum tuberosum increases tolerance to abiotic stress in transgenic potato plants. Biochemical and Biophysical Research Communications, 353(4), 863-868. doi:10.1016/j.bbrc.2006.12.095Lijavetzky, D., Carbonero, P., & Vicente-Carbajosa, J. (2003). BMC Evolutionary Biology, 3(1), 17. doi:10.1186/1471-2148-3-17Livak, K. J., & Schmittgen, T. D. (2001). Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods, 25(4), 402-408. doi:10.1006/meth.2001.1262Mackay, J. P., & Crossley, M. (1998). Zinc fingers are sticking together. Trends in Biochemical Sciences, 23(1), 1-4. doi:10.1016/s0968-0004(97)01168-7Mena, M., Vicente-Carbajosa, J., Schmidt, R. J., & Carbonero, P. (1998). An endosperm-specific DOF protein from barley, highly conserved in wheat, binds to and activates transcription from the prolamin-box of a native B-hordein promoter in barley endosperm. The Plant Journal, 16(1), 53-62. doi:10.1046/j.1365-313x.1998.00275.xMizoguchi, T., Wright, L., Fujiwara, S., Cremer, F., Lee, K., Onouchi, H., … Coupland, G. (2005). Distinct Roles of GIGANTEA in Promoting Flowering and Regulating Circadian Rhythms in Arabidopsis. The Plant Cell, 17(8), 2255-2270. doi:10.1105/tpc.105.033464Moreno-Risueno, M. Á., Martínez, M., Vicente-Carbajosa, J., & Carbonero, P. (2006). The family of DOF transcription factors: from green unicellular algae to vascular plants. Molecular Genetics and Genomics, 277(4), 379-390. doi:10.1007/s00438-006-0186-9Moreno-Risueno, M. Á., Díaz, I., Carrillo, L., Fuentes, R., & Carbonero, P. (2007). The HvDOF19 transcription factor mediates the abscisic acid-dependent repression of hydrolase genes in germinating barley aleurone. The Plant Journal, 51(3), 352-365. doi:10.1111/j.1365-313x.2007.03146.xMurashige, T., & Skoog, F. (1962). A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiologia Plantarum, 15(3), 473-497. doi:10.1111/j.1399-3054.1962.tb08052.xNakagawa, T., Kurose, T., Hino, T., Tanaka, K., Kawamukai, M., Niwa, Y., … Kimura, T. (2007). Development of series of gateway binary vectors, pGWBs, for realizing efficient construction of fusion genes for plant transformation. Journal of Bioscience and Bioengineering, 104(1), 34-41. doi:10.1263/jbb.104.34Oñate-Sánchez, L., & Vicente-Carbajosa, J. (2008). DNA-free RNA isolation protocols for Arabidopsis thaliana, including seeds and siliques. BMC Research Notes, 1(1), 93. doi:10.1186/1756-0500-1-93ORELLANA, S., YAÑEZ, M., ESPINOZA, A., VERDUGO, I., GONZÁLEZ, E., RUIZ-LARA, S., & CASARETTO, J. A. (2010). The transcription factor SlAREB1 confers drought, salt stress tolerance and regulates biotic and abiotic stress-related genes in tomato. Plant, Cell & Environment, 33(12), 2191-2208. doi:10.1111/j.1365-3040.2010.02220.xPapi, M., Sabatini, S., Altamura, M. M., Hennig, L., Schäfer, E., Costantino, P., & Vittorioso, P. (2002). Inactivation of the Phloem-Specific Dof Zinc Finger GeneDAG1 Affects Response to Light and Integrity of the Testa of Arabidopsis Seeds. Plant Physiology, 128(2), 411-417. doi:10.1104/pp.010488Pinheiro, C., & Chaves, M. M. (2010). Photosynthesis and drought: can we make metabolic connections from available data? Journal of Experimental Botany, 62(3), 869-882. doi:10.1093/jxb/erq340Pnueli, L. (2001). Tomato SP-Interacting Proteins Define a Conserved Signaling System That Regulates Shoot Architecture and Flowering. THE PLANT CELL ONLINE, 13(12), 2687-2702. doi:10.1105/tpc.13.12.2687Rajasekaran, L. R., Aspinall, D., & Paleg, L. G. (2000). Physiological mechanism of tolerance of Lycopersicon spp. exposed to salt stress. Canadian Journal of Plant Science, 80(1), 151-159. doi:10.4141/p99-003Rizhsky, L., Liang, H., Shuman, J., Shulaev, V., Davletova, S., & Mittler, R. (2004). When Defense Pathways Collide. The Response of Arabidopsis to a Combination of Drought and Heat Stress. Plant Physiology, 134(4), 1683-1696. doi:10.1104/pp.103.033431Rueda-López, M., Crespillo, R., Cánovas, F. M., & Ávila, C. (2008). Differential regulation of two glutamine synthetase genes by a single Dof transcription factor. The Plant Journal, 56(1), 73-85. doi:10.1111/j.1365-313x.2008.03573.xSawa, M., Nusinow, D. A., Kay, S. A., & Imaizumi, T. (2007). FKF1 and GIGANTEA Complex Formation Is Required for Day-Length Measurement in Arabidopsis. Science, 318(5848), 261-265. doi:10.1126/science.1146994Seki, M., Umezawa, T., Urano, K., & Shinozaki, K. (2007). Regulatory metabolic networks in drought stress responses. Current Opinion in Plant Biology, 10(3), 296-302. doi:10.1016/j.pbi.2007.04.014Shannon, M. C., & Grieve, C. M. (1998). Tolerance of vegetable crops to salinity. Scientia Horticulturae, 78(1-4), 5-38. doi:10.1016/s0304-4238(98)00189-7Shaw, L. M., McIntyre, C. L., Gresshoff, P. M., & Xue, G.-P. (2009). Members of the Dof transcription factor family in Triticum aestivum are associated with light-mediated gene regulation. Functional & Integrative Genomics, 9(4), 485-498. doi:10.1007/s10142-009-0130-2Shelp, B. J., Bown, A. W., & Faure, D. (2006). Extracellular γ-Aminobutyrate Mediates Communication between Plants and Other Organisms. Plant Physiology, 142(4), 1350-1352. doi:10.1104/pp.106.088955Shelp, B. (1999). Metabolism and functions of gamma-aminobutyric acid. Trends in Plant Science, 4(11), 446-452. doi:10.1016/s1360-1385(99)01486-7Skirycz, A., Jozefczuk, S., Stobiecki, M., Muth, D., Zanor, M. I., Witt, I., & Mueller-Roeber, B. (2007). Transcription factor AtDOF4;2 affects phenylpropanoid metabolism in Arabidopsis thaliana. New Phytologist, 175(3), 425-438. doi:10.1111/j.1469-8137.2007.02129.xSkirycz, A., Reichelt, M., Burow, M., Birkemeyer, C., Rolcik, J., Kopka, J., … Witt, I. (2006). DOF transcription factor AtDof1.1 (OBP2) is part of a regulatory network controlling glucosinolate biosynthesis in Arabidopsis. The Plant Journal, 47(1), 10-24. doi:10.1111/j.1365-313x.2006.02767.xSuárez-López, P., Wheatley, K., Robson, F., Onouchi, H., Valverde, F., & Coupland, G. (2001). CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature, 410(6832), 1116-1120. doi:10.1038/35074138Sun, S.-J., Guo, S.-Q., Yang, X., Bao, Y.-M., Tang, H.-J., Sun, H., … Zhang, H.-S. (2010). Functional analysis of a novel Cys2/His2-type zinc finger protein involved in salt tolerance in rice. Journal of Experimental Botany, 61(10), 2807-2818. doi:10.1093/jxb/erq120Takada, S., & Goto, K. (2003). TERMINAL FLOWER2, an Arabidopsis Homolog of HETEROCHROMATIN PROTEIN1, Counteracts the Activation of FLOWERING LOCUS T by CONSTANS in the Vascular Tissues of Leaves to Regulate Flowering Time. The Plant Cell, 15(12), 2856-2865. doi:10.1105/tpc.016345Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Molecular Biology and Evolution, 28(10), 2731-2739. doi:10.1093/molbev/msr121Thompson, J. (1997). The CLUSTAL_X windows
    corecore