403 research outputs found
Low-velocity collisions of centimeter-sized dust aggregates
Collisions between centimeter- to decimeter-sized dusty bodies are important
to understand the mechanisms leading to the formation of planetesimals. We thus
performed laboratory experiments to study the collisional behavior of dust
aggregates in this size range at velocities below and around the fragmentation
threshold. We developed two independent experimental setups with the same goal
to study the effects of bouncing, fragmentation, and mass transfer in free
particle-particle collisions. The first setup is an evacuated drop tower with a
free-fall height of 1.5 m, providing us with 0.56 s of microgravity time so
that we observed collisions with velocities between 8 mm/s and 2 m/s. The
second setup is designed to study the effect of partial fragmentation (when
only one of the two aggregates is destroyed) and mass transfer in more detail.
It allows for the measurement of the accretion efficiency as the samples are
safely recovered after the encounter. Our results are that for very low
velocities we found bouncing as could be expected while the fragmentation
velocity of 20 cm/s was significantly lower than expected. We present the
critical energy for disruptive collisions Q*, which showed up to be at least
two orders of magnitude lower than previous experiments in the literature. In
the wide range between bouncing and disruptive collisions, only one of the
samples fragmented in the encounter while the other gained mass. The accretion
efficiency in the order of a few percent of the particle's mass is depending on
the impact velocity and the sample porosity. Our results will have consequences
for dust evolution models in protoplanetary disks as well as for the strength
of large, porous planetesimal bodies
The outcome of protoplanetary dust growth: pebbles, boulders, or planetesimals? I. Mapping the zoo of laboratory collision experiments
The growth processes from protoplanetary dust to planetesimals are not fully
understood. Laboratory experiments and theoretical models have shown that
collisions among the dust aggregates can lead to sticking, bouncing, and
fragmentation. However, no systematic study on the collisional outcome of
protoplanetary dust has been performed so far so that a physical model of the
dust evolution in protoplanetary disks is still missing. We intend to map the
parameter space for the collisional interaction of arbitrarily porous dust
aggregates. This parameter space encompasses the dust-aggregate masses, their
porosities and the collision velocity. With such a complete mapping of the
collisional outcomes of protoplanetary dust aggregates, it will be possible to
follow the collisional evolution of dust in a protoplanetary disk environment.
We use literature data, perform own laboratory experiments, and apply simple
physical models to get a complete picture of the collisional interaction of
protoplanetary dust aggregates. In our study, we found four different types of
sticking, two types of bouncing, and three types of fragmentation as possible
outcomes in collisions among protoplanetary dust aggregates. We distinguish
between eight combinations of porosity and mass ratio. For each of these cases,
we present a complete collision model for dust-aggregate masses between 10^-12
and 10^2 g and collision velocities in the range 10^-4 to 10^4 cm/s for
arbitrary porosities. This model comprises the collisional outcome, the
mass(es) of the resulting aggregate(s) and their porosities. We present the
first complete collision model for protoplanetary dust. This collision model
can be used for the determination of the dust-growth rate in protoplanetary
disks.Comment: accepted by Astronomy and Astrophysic
Numerical Simulations of Highly Porous Dust Aggregates in the Low-Velocity Collision Regime
A highly favoured mechanism of planetesimal formation is collisional growth.
Single dust grains, which follow gas flows in the protoplanetary disc, hit each
other, stick due to van der Waals forces and form fluffy aggregates up to
centimetre size. The mechanism of further growth is unclear since the outcome
of aggregate collisions in the relevant velocity and size regime cannot be
investigated in the laboratory under protoplanetary disc conditions. Realistic
statistics of the result of dust aggregate collisions beyond decimetre size is
missing for a deeper understanding of planetary growth. Joining experimental
and numerical efforts we want to calibrate and validate a computer program that
is capable of a correct simulation of the macroscopic behaviour of highly
porous dust aggregates. After testing its numerical limitations thoroughly we
will check the program especially for a realistic reproduction of various
benchmark experiments. We adopt the smooth particle hydrodynamics (SPH)
numerical scheme with extensions for the simulation of solid bodies and a
modified version of the Sirono porosity model. Experimentally measured
macroscopic material properties of silica dust are implemented. We calibrate
and test for the compressive strength relation and the bulk modulus. SPH has
already proven to be a suitable tool to simulate collisions at rather high
velocities. In this work we demonstrate that its area of application can not
only be extended to low-velocity experiments and collisions. It can also be
used to simulate the behaviour of highly porous objects in this velocity regime
to a very high accuracy.The result of the calibration process in this work is
an SPH code that can be utilised to investigate the collisional outcome of
porous dust in the low-velocity regime.Comment: accepted by Astronomy & Astrophysic
\'Free Collisions in a Microgravity Many-Particle Experiment. II. The Collision Dynamics of Dust-Coated Chondrules
The formation of planetesimals in the early Solar System is hardly
understood, and in particular the growth of dust aggregates above millimeter
sizes has recently turned out to be a difficult task in our understanding [Zsom
et al. 2010, A&A, 513, A57]. Laboratory experiments have shown that dust
aggregates of these sizes stick to one another only at unreasonably low
velocities. However, in the protoplanetary disk, millimeter-sized particles are
known to have been ubiquitous. One can find relics of them in the form of solid
chondrules as the main constituent of chondrites. Most of these chondrules were
found to feature a fine-grained rim, which is hypothesized to have formed from
accreting dust grains in the solar nebula. To study the influence of these
dust-coated chondrules on the formation of chondrites and possibly
planetesimals, we conducted collision experiments between millimeter-sized,
dust-coated chondrule analogs at velocities of a few cm/s. For 2 and 3 mm
diameter chondrule analogs covered by dusty rims of a volume filling factor of
0.18 and 0.35-0.58, we found sticking velocities of a few cm/s. This velocity
is higher than the sticking velocity of dust aggregates of the same size. We
therefore conclude that chondrules may be an important step towards a deeper
understanding of the collisional growth of larger bodies. Moreover, we analyzed
the collision behavior in an ensemble of dust aggregates and non-coated
chondrule analogs. While neither the dust aggregates nor the solid chondrule
analogs show sticking in collisions among their species, we found an enhanced
sicking efficiency in collisions between the two constituents, which leads us
to the conjecture that chondrules might act as "catalyzers" for the growth of
larger bodies in the young Solar System
Breaking through: The effects of a velocity distribution on barriers to dust growth
It is unknown how far dust growth can proceed by coagulation. Obstacles to
collisional growth are the fragmentation and bouncing barriers. However, in all
previous simulations of the dust-size evolution in protoplanetary disks, only
the mean collision velocity has been considered, neglecting that a small but
possibly important fraction of the collisions will occur at both much lower and
higher velocities. We study the effect of the probability distribution of
impact velocities on the collisional dust growth barriers. Assuming a
Maxwellian velocity distribution for colliding particles to determine the
fraction of sticking, bouncing, and fragmentation, we implement this in a
dust-size evolution code. We also calculate the probability of growing through
the barriers and the growth timescale in these regimes. We find that the
collisional growth barriers are not as sharp as previously thought. With the
existence of low-velocity collisions, a small fraction of the particles manage
to grow to masses orders of magnitude above the main population. A particle
velocity distribution softens the fragmentation barrier and removes the
bouncing barrier. It broadens the size distribution in a natural way, allowing
the largest particles to become the first seeds that initiate sweep-up growth
towards planetesimal sizes.Comment: 4 pages, 3 figures. Accepted for publication as a Letter in Astronomy
and Astrophysic
Levodopa‐induced dyskinesia are mediated by cortical gamma oscillations in experimental Parkinsonism
Background Levodopa is the most efficacious drug in the symptomatic therapy of motor symptoms in Parkinson's disease (PD); however, long‐term treatment is often complicated by troublesome levodopa‐induced dyskinesia (LID). Recent evidence suggests that LID might be related to increased cortical gamma oscillations. Objective The objective of this study was to test the hypothesis that cortical high‐gamma network activity relates to LID in the 6‐hydroxydopamine model and to identify new biomarkers for adaptive deep brain stimulation (DBS) therapy in PD. Methods We recorded and analyzed primary motor cortex (M1) electrocorticogram data and motor behavior in freely moving 6‐OHDA lesioned rats before and during a daily treatment with levodopa for 3 weeks. The results were correlated with the abnormal involuntary movement score (AIMS) and used for generalized linear modeling (GLM). Results Levodopa reverted motor impairment, suppressed beta activity, and, with repeated administration, led to a progressive enhancement of LID. Concurrently, we observed a highly significant stepwise amplitude increase in finely tuned gamma (FTG) activity and gamma centroid frequency. Whereas AIMS and FTG reached their maximum after the 4th injection and remained on a stable plateau thereafter, the centroid frequency of the FTG power continued to increase thereafter. Among the analyzed gamma activity parameters, the fraction of longest gamma bursts showed the strongest correlation with AIMS. Using a GLM, it was possible to accurately predict AIMS from cortical recordings. Conclusions FTG activity is tightly linked to LID and should be studied as a biomarker for adaptive DBS
Diurnal variation of dust and gas production in comet 67P/Churyumov-Gerasimenko at the inbound equinox as seen by OSIRIS and VIRTIS-M on board Rosetta
Context. On 27 April 2015, when comet 67P/Churyumov-Gerasimenko was at 1.76 au from the Sun and moving toward perihelion, the OSIRIS an VIRTIS-M instruments on board the Rosetta spacecraft simultaneousl observed the evolving dust and gas coma during a complete rotation o the comet. Aims: We aim to characterize the spatial distributio of dust, H2O, and CO2 gas in the inner coma. To d this, we performed a quantitative analysis of the release of dust an gas and compared the observed H2O production rate with th rate we calculated using a thermophysical model. Methods: Fo this study we selected OSIRIS WAC images at 612 nm (dust) and VIRTIS- image cubes at 612 nm, 2700 nm (H2O emission band), and 420 nm (CO2 emission band). We measured the average signal in circular annulus to study the spatial variation around the comet, and i a sector of the annulus to study temporal variation in the sunwar direction with comet rotation, both at a fixed distance of 3.1 km fro the comet center. Results: The spatial correlation between dus and water, both coming from the sunlit side of the comet, shows tha water is the main driver of dust activity in this time period. Th spatial distribution of CO2 is not correlated with water an dust. There is no strong temporal correlation between the dus brightness and water production rate as the comet rotates. The dus brightness shows a peak at 0° subsolar longitude, which is no pronounced in the water production. At the same epoch, there is also maximum in CO2 production. An excess of measured wate production with respect to the value calculated using a simpl thermophysical model is observed when the head lobe and regions of th southern hemisphere with strong seasonal variations are illuminate (subsolar longitude 270°-50°). A drastic decrease in dust productio when the water production (both measured and from the model) displays maximum occurs when typical northern consolidated regions ar illuminated and the southern hemisphere regions with strong seasona variations are instead in shadow (subsolar longitude 50°-90°). Possibl explanations of these observations are presented and discusse
Cratering Experiments on the Self Armoring of Coarse-Grained Granular Targets
Recently published crater statistics on the small asteroids 25143 Itokawa and
433 Eros show a significant depletion of craters below approx. 100 m in
diameter. Possible mechanisms that were brought up to explain this lack of
craters were seismic crater erasure and self armoring of a coarse, boulder
covered asteroid surface. While seismic shaking has been studied in this
context, the concept of armoring lacks a deeper inspection and an experimental
ground truth. We therefore present cratering experiments of glass bead
projectiles impacting into granular glass bead targets, where the grain sizes
of projectile and target are in a similar range. The impact velocities are in
the range of 200 to 300 m/s. We find that craters become fainter and irregular
shaped as soon as the target grains are larger than the projectile sizes and
that granular craters rarely form when the size ratio between projectile and
target grain is around 1:10 or smaller. In that case, we observe a formation of
a strength determined crater in the first struck target grain instead. We
present a simple model based on the transfer of momentum from the projectile to
this first target grain, which is capable to explain our results with only a
single free parameter, which is moreover well determined by previous
experiments. Based on estimates of typical projectile size and boulder size on
Itokawa and Eros, given that our results are representative also for km/s
impact velocities, armoring should play an important role for their evolution.Comment: accepted for publication in Icaur
- …