19 research outputs found

    Secciones c贸nicas tangentes a la gr谩fica de una funci贸n y sus derivadas

    Get PDF
    The geometric problem of the tangent line to the graph of a function at a point P is studied within the derivative concept. The geometric problem of the tangent can be extended to other tangent curves and not only to the simplest curve (the tangent straight line). The tangent line is a specific case of a tangent conic section since a line is a degenerate conic section. Therefore a tangent conic section is a more general solution as this contains also the geometric problem of the tangent line. Here, the tangent conic sections to the graph of a function are determined. The tangent conic section contains the point P as its vertex whose tangent line is equal to the tangent line of the function at that point P. The second-degree equation of a tangent conic section is an implicitly defined function. So, the parametric equations are used to obtain the graphs and the derivatives easily. Tangent conic sections to a given point P of a function are calculated in illustrative examples.El problema geom茅trico de la recta tangente a la gr谩fica de una funci贸n en un punto P se estudia en el concepto de derivada. El problema geom茅trico de la tangente se puede extender a otras curvas tangentes y no solo a la curva m谩s simple (la recta tangente). La l铆nea tangente es un caso espec铆fico de una secci贸n c贸nica tangente ya que una l铆nea es una secci贸n c贸nica degenerada. Por lo tanto, una secci贸n c贸nica tangente es una soluci贸n m谩s general, ya que tambi茅n contiene el problema geom茅trico de la recta tangente. En este art铆culo, las secciones c贸nicas tangentes a la gr谩fica de una funci贸n son determinadas. La secci贸n c贸nica tangente contiene el punto P como su v茅rtice, cuya l铆nea tangente es igual a la l铆nea tangente de la funci贸n en ese punto P. La ecuaci贸n de segundo grado de una secci贸n c贸nica tangente es una funci贸n definida impl铆citamente. Entonces, las ecuaciones param茅tricas son usadas para obtener las gr谩ficas y las derivadas f谩cilmente. Las secciones c贸nicas tangentes a un punto P dado de una funci贸n se calculan en ejemplos ilustrativos

    Uma simples extens茫o do teorema de Rolle e sua rela莽茫o com m煤ltiplas taxas internas de retorno (TIR)

    Get PDF
    This paper presents a simple extension of Rolle鈥檚 Theorem. This extension allows determining the amount of numbers 尉i in which f'(尉i) = 0 in a given interval, using the characteristics of the function f in that interval. The extension has been proved, and the geometric interpretation has been presented. Illustrative examples have also been developed for each case that can be obtained by applying the extension. Finally, the study examines the relation of this theorem with the problem of multiple internal rates of return (IRR).En este art铆culo se presenta una extensi贸n simple del teorema de Rolle. Esta extensi贸n permite determinar la cantidad de n煤meros 尉i en los que f'(尉i) = 0 en un intervalo dado utilizando las caracter铆sticas de la funci贸n f en ese intervalo. La extensi贸n ha sido probada y se presenta la interpretaci贸n geom茅trica. Se han desarrollado ejemplos ilustrativos para cada uno de los casos que se pueden obtener aplicando la extensi贸n. Se presenta la relaci贸n de este teorema con el problema de las m煤ltiples tasas internas de retorno (TIR).Apresenta-se uma simples extens茫o do teorema de Rolle, a qual permite determinar a quantidade de N煤meros 尉i em que f'(尉i) = 0, num intervalo dado, utiliza as caracter铆sticas da fun莽茫o nesse intervalo. A extens茫o foi testada e 茅 apresentada a interpreta莽茫o geom茅trica. Exemplos ilustrativos foram desenvolvidos para cada um dos casos que podem ser obtidos a partir da extens茫o. Al茅m disso, 茅 apresentada a rela莽茫o desse teorema com o problema das m煤ltiplas taxas internas de retorno

    Apollonius' problem using equations of tangent circles

    Get PDF
    Secciones c贸nicas tangentes a la gr谩fica de una funci贸n son usadas para resolver el problema de Apolonio. Este art铆culo presenta un nuevo m茅todo para resolver este problema. El planteamiento del problema de Apolonio puede originar diez casos. Aqui, se resuelven tres casos. A saber, tres l铆neas (LLL), una l铆nea y dos puntos (LPP) y tres c铆rculos (CCC). Estas tres combinaciones consideran los tres objetos: c铆rculo, l铆nea y punto. La soluci贸n es similar en los otros siete casos del problema. Cuando los objetos, l铆nea o c铆rculo, son parte de los elementos del problema, la l铆nea o el c铆rculo se toman como funciones. Cuando un punto es un elemento del problema, la ecuaci贸n del c铆rculo tangente debe contener este punto. A estas funciones se les aplican las ecuaciones de los c铆rculos tangentes en la forma centro-radio. Dado que el desconocido c铆rculo tangente es tangente a los otros objetos (o pasa por los eventuales puntos dados) del problema, las diferentes ecuaciones producen un sistema de ecuaciones no lineales. De la soluci贸n de este sistema de ecuaciones se puede obtener el centro-radio del c铆rculo tangente desconocido y los puntos de tangencia.Tangent conic sections to the graph of a function are used to solve the Apollonius' problem. The statement of the Apollonius' problem can originate ten types of the problem. Here, three types are solved. Namely, three lines (LLL), one line and two points (LPP) and three circles (CCC). These three combinations consider the three objects: circle, line and point. The solution strategy is similar in the other seven cases of the problem. When the objects, line or circle, are part of the elements of the problem, the line or circle are taken as functions. The equations of the tangent circles in the form center-radius are applied to these functions. Since the unknown tangent circle is tangent to the other objects (or passes through the eventual given points) of the problem, the different equations produce a system of non-linear equations. From the solution of this system of equations can be obtained the center-radius of the unknown tangent circle and the points of tangency. When a point is an element of the problem, the equation of the (tangent) circle must contain this point

    Comparison of frictional resistance between passive self-ligating brackets and slide-type low-friction ligature brackets during the alignment and leveling stage

    Get PDF
    To compare the frictional resistance between passive self-ligating brackets and conventional brackets with low-friction ligature under bracket/archwire and root/bone interface during dental alignment and leveling. A tridimensional model of the maxilla and teeth of a patient treated with conventional brackets, and slide ligatures was generated employing the SolidWorks modeling software. SmartClip self-ligating brackets and Logic Line conventional brackets were assembled with slide low-friction ligatures, utilizing archwires with different diameters and alloys used for the alignment and leveling stage. Friction caused during the bracket/archwire interface and stress during the bone/root interface were compared through a finite element model. SmartClip and Logic Line brackets with slide elastomeric low-friction elastomeric ligature showed similar frictional stress values of 0.50 MPa and 0.64 MPa, respectively. Passive self-ligating brackets transmitted a lower load along the periodontal ligament, compared to conventional brackets with a low-friction ligature. Slide low-friction elastomeric ligatures showed frictional forces during the bracket/archwire interface similar to those of the SmartClip brackets, while the distribution of stresses and deformations during the root/bone interface were lower in the passive self-ligating brackets

    Escala de Dificultades de Regulaci贸n Emocional (DERS): Evidencia de validez y fiabilidad en muestras colombianas

    Get PDF
    Difficulties in emotion regulation are associated with anxiety and problems in social relationships, among others, which supports evaluating them and having scales adapted to each context. The objective of the present study was to determine the validity and reliability of the Difficulties in Emotion Regulation Scale (DERS) in Colombian community samples and provide qualification standards for assessment in Colombia. 1435 participants were included in two studies. In the first (n = 724, Mage = 21.00, SDage = 2.98) reliability and exploratory factor analyses were conducted, whereas in the second (n = 711, Mage = 21.56; SDage = 3.68) a confirmatory factor analysis was performed. The results showed a five-factor structure, similar to the original version, which explained 64.1% of the total variance. The confirmatory analysis revealed adequate adjustment and reliability indicators greater than .80. Results suggest that the DERS is valid and reliable to assess emotional dysregulation in Colombian samples.Las dificultades de regulaci贸n emocional se asocian con la ansiedad y problemas en relaciones sociales, entre otros, lo que sustenta evaluarlas y tener escalas adaptadas a cada contexto. El objetivo del presente estudio fue determinar la validez y fiabilidad de la Escala de Dificultades de Regulaci贸n Emocional (DERS) en muestras comunitarias colombianas y proporcionar baremos de calificaci贸n para la evaluaci贸n en Colombia. Se incluyeron 1435 participantes en dos estudios. En el primero (n = 724, Medad = 21.00; DTedad = 2.98) se llevaron a cabo un an谩lisis factorial exploratorio y de fiabilidad, mientras que en el segundo (n = 711, Medad = 21.56; DTedad = 3.68) se realiz贸 un an谩lisis factorial confirmatorio. Los resultados mostraron una estructura de cinco factores, similar a la versi贸n original, que explic贸 el 64.1% de la varianza total. El an谩lisis confirmatorio revel贸 adecuados indicadores de ajuste y de fiabilidad superiores a .80. Los resultados sugieren que el DERS es v谩lido y confiable para evaluar la desregulaci贸n emocional en muestras colombianas

    Dise帽o de una bater铆a de evaluaci贸n de la percepci贸n de riesgo hacia el consumo de marihuana para universitarios colombianos Design of a battery to evaluate the perception of risk towards marijuana consumption for colombian university students

    Get PDF
    La literatura se refiere a la percepci贸n de riesgo como un aspecto determinante para el consumo de marihuana, pero no existen instrumentos que la eval煤en de forma objetiva. Objetivo. Dise帽ar una bater铆a de evaluaci贸n de la percepci贸n de riesgo hacia el consumo de marihuana, para universitarios colombianos. M茅todo. Estudio de tipo instrumental. Se dise帽贸 una tabla de especificaciones, la cual guio la construcci贸n de los reactivos; luego se realiz贸 la validaci贸n por 12 jueces expertos, cinco en psicometr铆a y siete en psicolog铆a cl铆nica; se hicieron los ajustes a los 铆tems; la aplicaci贸n de la prueba a 520 universitarios (media = 21.31; DE= 3.59) y los an谩lisis factoriales exploratorios, confirmatorios, y an谩lisis de consistencia interna de la prueba. Resultados. Se elabor贸 una bater铆a con tres subpruebas (severidad, vulnerabilidad absoluta y vulnerabilidad relativa), con alta varianza explicada por cada escala, con modelos que presentan adecuadas bondades de ajuste, altos alfas de Cronbach (en .96, para cada prueba) y apropiadas correlaciones entre 铆tem-铆tem y entre 铆tem-prueba. Conclusiones. La bater铆a elaborada para la evaluaci贸n de la percepci贸n de riesgo hacia el consumo de marihuana es una bater铆a v谩lida y confiable para universitarios colombianos.The literature referring to the perception of risk as a determining aspect for the consumption of marijuana, but there are no instruments for its objective evaluation. Aim. To design a battery of evaluation of the perception of risk towards the consumption of marijuana, for Colombian university students. Method. Instrumental study, a table of specifications was designed, which guided the construction of the items, then the validation was carried out by 12 expert judges, five in psychometry and seven in clinical psychology, the adjustments to the items, the application of the test to 520 university students (mean = 21.31; SD = 3.59) and the exploratory, confirmatory factor analyzes, and analysis of the internal consistency of the test. Results. A battery with three subtests (severity, absolute vulnerability, and relative vulnerability) was elaborated, with high variance explained by each scale, with models that present adequate goodness-of-fit indicators, high Cronbach鈥檚 alphas (in .96, for each test) and correct correlations between item-item and between item-test. Conclusions. The battery developed for evaluating the perception of risk towards marijuana use is a valid and reliable battery for Colombian university student

    A simple extension of Rolle's theorem and its relation with multiple internal rates of return (IRR).

    Get PDF
    This paper presents a simple extension of Rolle鈥檚 Theorem. This extension allows determining the amount of numbers 尉i in which f'(尉i) = 0 in a given interval, using the characteristics of the function f in that interval. The extension has been proved, and the geometric interpretation has been presented. Illustrative examples have also been developed for each case that can be obtained by applying the extension. Finally, the study examines the relation of this theorem with the problem of multiple internal rates of return (IRR)

    Flujos de efectivo en el contexto de la ecuaci贸n econ贸mica de continuidad

    No full text
    The mathematic scheme, known as economic equation of continuity, is established for the balance of economic resources. In order to apply this equation it is necessary to determine an economic volume of control. The patrimonial equation is also proposed as a speed equationfor this volurne. The integral equation of economic continuity is applied to the 芦cash禄 system along with the integral patrimonial equation and so it gets expressions that correspond to model to elaborate cashflow statement with the particularities of the direct and indirect method. This model generales a useful definition for the calculation of this basic financial statement classified by operating, investing and financing activities.Se establece el esquema matem谩tico para el balance do recursos econ贸micos conocido como ecuaci贸n econ贸mica de continuidad, para aplicar la ecuaci贸n se necesita determinar un volumen econ贸mico de control; para este volumen tambi茅n se plantea la ecuaci贸n patrimonial como una ecuaci贸n de velocidad. Se desarrolla la ecuaci贸n integral de con tinuidad econ贸mica aplicada al sistema 芦efectivo禄 junto con la ecuaci贸n patrimonial integral obteni茅ndose expresiones que corresponden al modelo para la elaboraci贸n del estado de flujos de efec tivo con las particularidades del m茅todo el irec to e indirecto. Este modelo genera una definici贸n 煤til para el c谩lculo de este estado financiero b谩sico clasificado por actividades de operaci贸n, inversi贸n y financiaci贸n

    Interpretaci贸n geom茅trica de la ecuaci贸n del c铆rculo en el plano complejo usando la funci贸n de valor real equivalente

    No full text
    A function of a circle in the complex plane is obtained. The complex function represents the complex roots (discriminant less than zero) and the unique real solution (discriminant is equal to zero) of the first (or second) tangent circles to the real-valued function that represents the superior (or inferior) part of a circle with center on the -axis. In other words, if tangent circles are drawn to a circle with center on the -axis, the roots of the tangent circles that do not touch the -axis and the root of the tangent circle that only touch the -axis at one point are located on a circle in the complex plane.A function of a circle in the complex plane is obtained. The complex function represents the complex roots (discriminant less than zero) and the unique real solution (discriminant is equal to zero) of the first (or second) tangent circles to the real-valued function that represents the superior (or inferior) part of a circle with center on the -axis. In other words, if tangent circles are drawn to a circle with center on the -axis, the roots of the tangent circles that do not touch the -axis and the root of the tangent circle that only touch the -axis at one point are located on a circle in the complex plane

    A simple extension of Rolle鈥檚 theorem and its relation with multiple internal rates of return (IRR)

    No full text
    This paper presents a simple extension of Rolle鈥檚 Theorem. This extension allows determining the amount of numbers 尉i in which f'(尉i) = 0 in a given interval, using the characteristics of the function f in that interval. The extension has been proved, and the geometric interpretation has been presented. Illustrative examples have also been developed for each case that can be obtained by applying the extension. Finally, the study examines the relation of this theorem with the problem of multiple internal rates of return (IRR).Apresenta-se uma simples extens茫o do teorema de Rolle, a qual permite determinar a quantidade de N煤meros 尉i em que f'(尉i) = 0, num intervalo dado, utiliza as caracter铆sticas da fun莽茫o nesse intervalo. A extens茫o foi testada e 茅 apresentada a interpreta莽茫o geom茅trica. Exemplos ilustrativos foram desenvol-vidos para cada um dos casos que podem ser obtidos a partir da extens茫o. Al茅m disso, 茅 apresentada a rela莽茫o desse teorema com o problema das m煤ltiplas taxas internas de retorno.En este art铆culo se presenta una extensi贸n simple del teorema de Rolle. Esta extensi贸n permite determinar la cantidad de n煤meros 尉i en los que f'(尉i) = 0 en un intervalo dado utilizando las caracter铆sticas de la funci贸n fen ese intervalo. La extensi贸n ha sido probada y se presenta la interpretaci贸n geom茅trica. Se han desarrollado ejemplos ilustrativos para cada uno de los casos que se pueden obtener aplicando la extensi贸n. Se presenta la relaci贸n de este teorema con el problema de las m煤ltiples tasas internas de retorno (TIR)
    corecore