120 research outputs found

    Stereoisomeric semiconducting radical cation salts of chiral bis(2-hydroxypropylthio)ethylenedithioTTF with tetrafluoroborate anions

    Get PDF
    The new chiral TTF-based donor molecule bis(2-hydroxypropylthio)ethylenedithiotetrathiafulvalene has produced enantiopure R,R and S,S radical cation salts with the tetrafluoroborate anion as well as the nearly isostructural meso/racemate mixture. The enantiopure R,R or S,S salts are both 1:1 semiconducting salts with activation energies of 0.19–0.24 eV, both crystallising in the orthorhombic space group C2221. The semiconducting salt containing both meso and racemic donor cations has a very similar crystal structure but crystallising in the monoclinic space group C2/c (β = 91.39°) with similar S⋯S interactions but a smaller activation energy of 0.15–0.17 eV. This is in contrast to previous families of this type where the disordered racemate has a larger activation energy than its enantiopure salts

    New crystal packing arrangements in radical cation salts of BEDT-TTF with [Cr(NCS)6]3− and [Cr(NCS)5(NH3)]2−

    Get PDF
    BEDT-TTF forms three packing arrangement styles in its radical cation salts with [Cr(NCS)6]3− in two of which two trans-oriented isothiocyanate ligands penetrate the BEDT-TTF layers either at the point where a solvent (nitrobenzene) is incorporated in a stack of donors or by four donor molecules forming a “tube” motif to accept a ligand at each end along with a small solvent molecule in between (acetonitrile). The [Cr(NCS)5NH3]2− ion forms a related crystal packing arrangement with BEDT-TTF with a reduction in the number of “tube” motifs needed to accept an isothiocyanate ligand

    Management of a ruptured epidural catheter, an anesthesiologist's dilemma: a case report

    Get PDF
    Epidural anesthesia is a widely used anesthetic technique in lower extremity surgeries although it is a relatively safe procedure, it can have complications, such as rupture of the epidural catheter. This is a 69-year-old male patient with a diagnosis of Wagner IV diabetic foot is presented, which was scheduled for left supracondylar amputation in which after epidural block, retention of the catheter tip in the epidural space at level L2-L3 was seen, so hemi laminectomy was performed in a second surgical stage in L2 and removal of the epidural catheter. Ideally a broken needle should be removed as soon as possible

    Fluorescent Discrimination between Traces of Chemical Warfare Agents and Their Mimics

    Get PDF
    An array of fluorogenic probes is able to discriminate between nerve agents, sarin, soman, tabun, VX and their mimics, in water or organic solvent, by qualitative fluorescence patterns and quantitative multivariate analysis, thus making the system suitable for the inthe- field detection of traces of chemical warfare agents as well as to differentiate between the real nerve agents and other related compounds.Ministerio de Economía y Competitividad, Spain (Project CTQ2012- 31611), Junta de Castilla y León, Consejería de Educación y Cultura y Fondo Social Europeo (Project BU246A12-1), the European Commission, Seventh Framework Programme (Project SNIFFER FP7-SEC-2012-312411) and the Swedish Ministry of Defence (no. A403913

    Magnetic and Photoluminescent Sensors Based on Metal-Organic Frameworks Built up from 2-aminoisonicotinate

    Get PDF
    Red Guipuzcoana de Ciencia, Tecnologia e Innovacion OF218/2018 University of Basque Country GIU 17/13 Basque Government IT1005-16 IT1291-19 IT1310-19 Junta de Andalucia FQM-394 Spanish Ministry of Science, Innovation and Universities (MCIU/AEI/FEDER, UE) PGC2018-102052-A-C22 PGC2018-102052-B-C21 MAT2016-75883-C2-1-P European Union (EU) ESFIn this work, three isostructural metal-organic frameworks based on frst row transition metal ions and 2-aminoisonicotinate (2ain) ligands, namely, {[M(μ-2ain)2]·DMF}n [MII=Co (1), Ni (2), Zn (3)], are evaluated for their sensing capacity of various solvents and metal ions by monitoring the modulation of their magnetic and photoluminescence properties. The crystal structure consists of an open diamond-like topological 3D framework that leaves huge voids, which allows crystallizing two-fold interpenetrated architecture that still retains large porosity. Magnetic measurements performed on 1 reveal the occurrence of feld-induced spin-glass behaviour characterized by a frequency-independent relaxation. Solvent-exchange experiments lead successfully to the replacement of lattice molecules by DMSO and MeOH, which, on its part, show dominating SIM behaviour with low blocking temperatures but substantially high energy barriers for the reversal of the magnetization. Photoluminescence studied at variable temperature on compound 3 show its capacity to provide bright blue emission under UV excitation, which proceeds through a ligand-centred charge transfer mechanism as confrmed by timedependent DFT calculations. Turn-of and/or shift of the emission is observed for suspensions of 3 in diferent solvents and aqueous solutions containing metal ions

    Emergence of an Outbreak-Associated Clostridium difficile Variant with Increased Virulence

    Get PDF
    The prevalence of Clostridium difficile infections has increased due to the emergence of epidemic variants from diverse genetic lineages. Here we describe the emergence of a novel variant during an outbreak in a Costa Rican hospital that was associated with severe clinical presentations. This C. difficile variant elicited higher white blood cell counts and caused disease in younger patients than did other strains isolated during the outbreak. Furthermore, it had a recurrence rate, a 30-day attributable disease rate, and disease severity as great as those of the epidemic strain NAP1. Pulsed-field gel electrophoresis genotyping indicated that the outbreak strains belong to a previously undescribed variant, designated NAPCR1. Whole-genome sequencing and ribotyping indicated that the NAPCR1 variant belongs to C. difficile ribotype 012 and sequence type 54, as does the reference strain 630. NAPCR1 strains are resistant to fluoroquinolones due to a mutation in gyrA, and they possess an 18-bp deletion in tcdC that is characteristic of the epidemic, evolutionarily distinct, C. difficile NAP1 variant. NAPCR1 genomes contain 10% more predicted genes than strain 630, most of which are of hypothetical function and are present on phages and other mobile genetic elements. The increased virulence of NAPCR1 was confirmed by mortality rates in the hamster model and strong inflammatory responses induced by bacteria-free supernatants in the murine ligated loop model. However, NAPCR1 strains do not synthesize toxin A and toxin B at levels comparable to those in NAP1 strains. Our results suggest that the pathogenic potential of this emerging C. difficile variant is due to the acquisition of hypothetical functions associated with laterally acquired DNA.Universidad de Costa Rica/[803-B1-654]/UCR/Costa RicaUniversidad de Costa Rica/[803-B1-602]/UCR/Costa RicaConsejo Nacional de Ciencia y Tecnología/[FV-0004-13]/CONICIT/Costa Rica. Fondo gestionado a través de FORINVESPrograma de Cooperación Internacional/[130621650]/FA0/BrasilWellcome Trust/[098051}//Reino UnidoWellcome Trust/[086418]//Reino UnidoWellcome Trust/[098051]//Reino UnidoUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias de la Salud::Centro de Investigación en Enfermedades Tropicales (CIET)UCR::Vicerrectoría de Docencia::Salud::Facultad de Microbiologí

    Clinical research in ovarian cancer: consensus recommendations from the Gynecologic Cancer InterGroup

    Get PDF
    The Gynecologic Cancer InterGroup (GCIG) sixth Ovarian Cancer Conference on Clinical Research was held virtually in October, 2021, following published consensus guidelines. The goal of the consensus meeting was to achieve harmonisation on the design elements of upcoming trials in ovarian cancer, to select important questions for future study, and to identify unmet needs. All 33 GCIG member groups participated in the development, refinement, and adoption of 20 statements within four topic groups on clinical research in ovarian cancer including first line treatment, recurrent disease, disease subgroups, and future trials. Unanimous consensus was obtained for 14 of 20 statements, with greater than 90% concordance in the remaining six statements. The high acceptance rate following active deliberation among the GCIG groups confirmed that a consensus process could be applied in a virtual setting. Together with detailed categorisation of unmet needs, these consensus statements will promote the harmonisation of international clinical research in ovarian cancer

    Drosophila Evolution over Space and Time (DEST): A New Population Genomics Resource

    Get PDF
    Drosophila melanogaster is a leading model in population genetics and genomics, and a growing number of whole-genome data sets from natural populations of this species have been published over the last years. A major challenge is the integration of disparate data sets, often generated using different sequencing technologies and bioinformatic pipelines, which hampers our ability to address questions about the evolution of this species. Here we address these issues by developing a bioinformatics pipeline that maps pooled sequencing (Pool-Seq) reads from D. melanogaster to a hologenome consisting of fly and symbiont genomes and estimates allele frequencies using either a heuristic (PoolSNP) or a probabilistic variant caller (SNAPE-pooled). We use this pipeline to generate the largest data repository of genomic data available for D. melanogaster to date, encompassing 271 previously published and unpublished population samples from over 100 locations in >20 countries on four continents. Several of these locations have been sampled at different seasons across multiple years. This data set, which we call Drosophila Evolution over Space and Time (DEST), is coupled with sampling and environmental metadata. A web-based genome browser and web portal provide easy access to the SNP data set. We further provide guidelines on how to use Pool-Seq data for model-based demographic inference. Our aim is to provide this scalable platform as a community resource which can be easily extended via future efforts for an even more extensive cosmopolitan data set. Our resource will enable population geneticists to analyze spatiotemporal genetic patterns and evolutionary dynamics of D. melanogaster populations in unprecedented detail.We thank four reviewers and the handling editor for helpful comments on previous versions of our manuscript. We are grateful to the members of the DrosEU and DrosRTEC consortia for their long-standing support, collaboration, and for discussion. DrosEU was funded by a Special Topic Networks (STN) grant from the European Society for Evolutionary Biology (ESEB). M.K. was supported by the Austrian Science Foundation (grant no. FWF P32275); J.G. by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (H2020-ERC-2014-CoG-647900) and by the Spanish Ministry of Science and Innovation (BFU-2011-24397); T.F. by the Swiss National Science Foundation (SNSF grants PP00P3_133641, PP00P3_165836, and 31003A_182262) and a Mercator Fellowship from the German Research Foundation (DFG), held as a EvoPAD Visiting Professor at the Institute for Evolution and Biodiversity, University of Münster; AOB by the National Institutes of Health (R35 GM119686); M.K. by Academy of Finland grant 322980; V.L. by Danish Natural Science Research Council (FNU) (grant no. 4002-00113B); FS Deutsche Forschungsgemeinschaft (DFG) (grant no. STA1154/4-1), Project 408908608; J.P. by the Deutsche Forschungsgemeinschaft Projects 274388701 and 347368302; A.U. by FPI fellowship (BES-2012-052999); ET Israel Science Foundation (ISF) (grant no. 1737/17); M.S.V., M.S.R. and M.J. by a grant from the Ministry of Education, Science and Technological Development of the Republic of Serbia (451-03-68/2020-14/200178); A.P., K.E. and M.T. by a grant from the Ministry of Education, Science and Technological Development of the Republic of Serbia (451-03-68/2020-14/200007); and TM NSERC grant RGPIN-2018-05551. The authors acknowledge Research Computing at The University of Virginia for providing computational resources and technical support that have contributed to the results reported within this publication (https://rc.virginia.edu, last accessed September 6, 2021)

    Drosophila evolution over space and time (DEST):A new population genomics resource

    Get PDF
    Drosophila melanogaster is a leading model in population genetics and genomics, and a growing number of whole-genome datasets from natural populations of this species have been published over the last years. A major challenge is the integration of disparate datasets, often generated using different sequencing technologies and bioinformatic pipelines, which hampers our ability to address questions about the evolution of this species. Here we address these issues by developing a bioinformatics pipeline that maps pooled sequencing (Pool-Seq) reads from D. melanogaster to a hologenome consisting of fly and symbiont genomes and estimates allele frequencies using either a heuristic (PoolSNP) or a probabilistic variant caller (SNAPE-pooled). We use this pipeline to generate the largest data repository of genomic data available for D. melanogaster to date, encompassing 271 previously published and unpublished population samples from over 100 locations in > 20 countries on four continents. Several of these locations have been sampled at different seasons across multiple years. This dataset, which we call Drosophila Evolution over Space and Time (DEST), is coupled with sampling and environmental meta-data. A web-based genome browser and web portal provide easy access to the SNP dataset. We further provide guidelines on how to use Pool-Seq data for model-based demographic inference. Our aim is to provide this scalable platform as a community resource which can be easily extended via future efforts for an even more extensive cosmopolitan dataset. Our resource will enable population geneticists to analyze spatio-temporal genetic patterns and evolutionary dynamics of D. melanogaster populations in unprecedented detail.DrosEU is funded by a Special Topic Networks (STN) grant from the European Society for Evolutionary Biology (ESEB). MK (M. Kapun) was supported by the Austrian Science Foundation (grant no. FWF P32275); JG by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (H2020-ERC-2014-CoG-647900) and by the Spanish Ministry of Science and Innovation (BFU-2011-24397); TF by the Swiss National Science Foundation (SNSF grants PP00P3_133641, PP00P3_165836, and 31003A_182262) and a Mercator Fellowship from the German Research Foundation (DFG), held as a EvoPAD Visiting Professor at the Institute for Evolution and Biodiversity, University of Münster; AOB by the National Institutes of Health (R35 GM119686); MK (M. Kankare) by Academy of Finland grant 322980; VL by Danish Natural Science Research Council (FNU) grant 4002-00113B; FS Deutsche Forschungsgemeinschaft (DFG) grant STA1154/4-1, Project 408908608; JP by the Deutsche Forschungsgemeinschaft Projects 274388701 and 347368302; AU by FPI fellowship (BES-2012-052999); ET Israel Science Foundation (ISF) grant 1737/17; MSV, MSR and MJ by a grant from the Ministry of Education, Science and Technological Development of the Republic of Serbia (451-03-68/2020-14/200178); AP, KE and MT by a grant from the Ministry of Education, Science and Technological Development of the Republic of Serbia (451-03-68/2020-14/200007); and TM NSERC grant RGPIN-2018-05551.Peer reviewe
    corecore