122 research outputs found

    T22-PE24-H6 Nanotoxin Selectively Kills CXCR4-High Expressing AML Patient Cells In Vitro and Potently Blocks Dissemination In Vivo

    Get PDF
    Altres ajuts: EU COST Action CA 17140; CERCA Programme/Generalitat de Catalunya; ICREA AcademiaDespite advances in the development of targeted therapies for acute myeloid leukemia (AML), most patients relapse. For that reason, it is still necessary to develop novel therapies that improve treatment effectiveness and overcome drug resistance. We developed T22-PE24-H6, a protein nanoparticle that contains the exotoxin A from the bacterium Pseudomonas aeruginosa and is able to specifically deliver this cytotoxic domain to CXCR4 + leukemic cells. Next, we evaluated the selective delivery and antitumor activity of T22-PE24-H6 in CXCR4 + AML cell lines and BM samples from AML patients. Moreover, we assessed the in vivo antitumor effect of this nanotoxin in a disseminated mouse model generated from CXCR4 + AML cells. T22-PE24-H6 showed a potent, CXCR4-dependent antineoplastic effect in vitro in the MONO-MAC-6 AML cell line. In addition, mice treated with nanotoxins in daily doses reduced the dissemination of CXCR4 + AML cells compared to buffer-treated mice, as shown by the significant decrease in BLI signaling. Furthermore, we did not observe any sign of toxicity or changes in mouse body weight, biochemical parameters, or histopathology in normal tissues. Finally, T22-PE24-H6 exhibited a significant inhibition of cell viability in CXCR4 high AML patient samples but showed no activity in CXCR4 low samples. These data strongly support the use of T22-PE24-H6 therapy to benefit high-CXCR4-expressing AML patients

    An Auristatin nanoconjugate targeting CXCR4+ leukemic cells blocks acute myeloid leukemia dissemination

    Get PDF
    Altres ajuts: EU COST Action CA 17140 to R.M. A grant from La Generalitat de Catalunya (PERIS) [SLT002/16/00433 to J.S.]; a grant from the Generalitat de Catalunya CERCA Programme. The work was also supported by PERIS program from the health department of the Generalitat de Catalunya (SLT006/17/00093) [grated to U.U.] and Fundación Española de Hematología y Hemoterapia (FEHH) [granted to V.P.]. Finally, AV received an ICREA ACADEMIA Award supported by the Catalan Government.Background: current acute myeloid leukemia (AML) therapy fails to eliminate quiescent leukemic blasts in the bone marrow, leading to about 50% of patient relapse by increasing AML burden in the bone marrow, blood, and extramedullar sites. We developed a protein-based nanoparticle conjugated to the potent antimitotic agent Auristatin E that selectively targets AML blasts because of their CXCR4 receptor overexpression (CXCR4+) as compared to normal cells. The therapeutic rationale is based on the involvement of CXCR4 overexpression in leukemic blast homing and quiescence in the bone marrow, and the association of these leukemic stem cells with minimal residual disease, dissemination, chemotherapy resistance, and lower patient survival. - Methods: monomethyl Auristatin E (MMAE) was conjugated with the CXCR4 targeted protein nanoparticle T22-GFP-H6 produced in E. coli. Nanoconjugate internalization and in vitro cell viability assays were performed in CXCR4+ AML cell lines to analyze the specific antineoplastic activity through the CXCR4 receptor. In addition, a disseminated AML animal model was used to evaluate the anticancer effect of T22-GFP-H6-Auristatin in immunosuppressed NSG mice (n = 10/group). U of Mann-Whitney test was used to consider if differences were significant between groups. - Results: T22-GFP-H6-Auristatin was capable to internalize and exert antineoplastic effects through the CXCR4 receptor in THP-1 and SKM-1 CXCR4+ AML cell lines. In addition, repeated administration of the T22-GFP-H6-Auristatin nanoconjugate (9 doses daily) achieves a potent antineoplastic activity by internalizing specifically in the leukemic cells (luminescent THP-1) to selectively eliminate them. This leads to reduced involvement of leukemic cells in the bone marrow, peripheral blood, liver, and spleen, while avoiding toxicity in normal tissues in a luminescent disseminated AML mouse model. - Conclusions: a novel nanoconjugate for targeted drug delivery of Auristatin reduces significantly the acute myeloid leukemic cell burden in the bone marrow and blood and blocks its dissemination to extramedullar organs in a CXCR4+ AML model. This selective drug delivery approach validates CXCR4+ AML cells as a target for clinical therapy, not only promising to improve the control of leukemic dissemination but also dramatically reducing the severe toxicity of classical AML therapy

    A CXCR4-targeted nanocarrier achieves highly selective tumor uptake in diffuse large B-cell lymphoma mouse models

    Get PDF
    Altres ajuts: U COST Action CA 17140 to RM; FIS PI17/01246, RD12/0036/0071 and FIS PI14/00450 to JS; CP15/00163 to MVC; FIS PI15/00272 to EV ; CIBER-BBN [CB06/01/1031 and 4NanoMets to RM ; and VENOM4CANCER to AV. Grant from La Generalitat de Catalunya (PERIS) [SLT002/16/00433 to JSOne-third of diffuse large B-cell lymphoma patients are refractory to initial treatment or relapse after rituximab plus cyclophosphamide, doxorubicin, vincristine and prednisone chemotherapy. In these patients, CXCR4 overexpression (CXCR4+) associates with lower overall and disease-free survival. Nanomedicine pursues active targeting to selectively deliver antitumor agents to cancer cells; a novel approach that promises to revolutionize therapy by dramatically increasing drug concentration in target tumor cells. In this study, we intravenously administered a liganded protein nanocarrier (T22-GFP-H6) targeting CXCR4+ lymphoma cells in mouse models to assess its selectivity as a nanocarrier by measuring its tissue biodistribution in cancer and normal cells. No previous protein-based nanocarrier has been described as specifically targeting lymphoma cells. T22-GFP-H6 achieved a highly selective tumor uptake in a CXCR4+ lymphoma subcutaneous model, as detected by fluorescent emission. We demonstrated that tumor uptake was CXCR4-dependent because pretreatment with AMD3100, a CXCR4 antagonist, significantly reduced tumor uptake. Moreover, in contrast to CXCR4+ subcutaneous models, CXCR4- tumors did not accumulate the nanocarrier. Most importantly, after intravenous injection in a disseminated model, the nanocarrier accumulated and internalized in all clinically relevant organs affected by lymphoma cells with negligible distribution to unaffected tissues. Finally, we obtained antitumor effect without toxicity in a CXCR4+ lymphoma model by administration of T22-DITOX-H6, a nanoparticle incorporating a toxin with the same structure as the nanocarrier. Hence, the use of the T22-GFP-H6 nanocarrier could be a good strategy to load and deliver drugs or toxins to treat specifically CXCR4-mediated refractory or relapsed diffuse large B-cell lymphom

    A multivalent Ara-C-prodrug nanoconjugate achieves selective ablation of leukemic cells in an acute myeloid leukemia mouse model

    Get PDF
    Altres ajuts: EU COST Action CA 17140 ; CIBER-BBN [CB06/01/1031 and 4NanoMets to R.M., VENOM4CANCER to A.V., NANOREMOTE to E.V. and NANOLINK to U·U.] ; CERCA Programme/Generalitat de Catalunya ; ICREA Academia Award. Fundació la Marató de TV3 201-941-30-31-32.Current therapy in acute myeloid leukemia (AML) is based on chemotherapeutic drugs administered at high doses, lacking targeting selectivity and displaying poor therapeutic index because of severe adverse effects. Here, we develop a novel nanoconjugate that combines a self-assembled, multivalent protein nanoparticle, targeting the CXCR4 receptor, with an Oligo-Ara-C prodrug, a pentameric form of Ara-C, to highly increase the delivered payload to target cells. This 13.4 nm T22-GFP-H6-Ara-C nanoconjugate selectively eliminates CXCR4 AML cells, which are protected by its anchoring to the bone marrow (BM) niche, being involved in AML progression and chemotherapy resistance. This nanoconjugate shows CXCR4-dependent internalization and antineoplastic activity in CXCR4 AML cells in vitro. Moreover, repeated T22-GFP-H6-Ara-C administration selectively eliminates CXCR4 leukemic cells in BM, spleen and liver. The leukemic dissemination blockage induced by T22-GFP-H6-Ara-C is significantly more potent than buffer or Oligo-Ara-C-treated mice, showing no associated on-target or off-target toxicity and, therefore, reaching a highly therapeutic window. In conclusion, T22-GFP-H6-Ara-C exploits its 11 ligands-multivalency to enhance target selectivity, while the Oligo-Ara-C prodrug multimeric form increases 5-fold its payload. This feature combination offers an alternative nanomedicine with higher activity and greater tolerability than current intensive or non-intensive chemotherapy for AML patients

    Selective delivery of T22-PE24-H6 to CXCR4 + diffuse large B-cell lymphoma cells leads to wide therapeutic index in a disseminated mouse model

    Get PDF
    Altres ajuts: EU COST Action CA 17140 to R.M., FIS PI17/01246 and RD16/0011/0028 to J.S., and FIS PI15/00272 to E.V. CIBER-BBN [CB06/01/1031 and 4NanoMets to R.M., and VENOM4CANCER to A.V.]. a grant from the Generalitat de Catalunya (PERIS) [SLT002/16/00433 to J.S.] and PERIS SLT006/17/00093 from the Generalitat de Catalunya to U.U. Generalitat de Catalunya CERCA Programme. A.V. received an Icrea Academia AwardBackground : Novel therapeutic strategies are urgently needed to reduce relapse rates and enhance survival in Diffuse Large B-Cell Lymphoma (DLBCL) patients. CXCR4-overexpressing cancer cells are good targets for therapy because of their association with dissemination and relapse in R-CHOP treated DLBCL patients. Immunotoxins that incorporate bacterial toxins are potentially effective in treating haematological neoplasias, but show a narrow therapeutic index due to the induction of severe side effects. Therefore, when considering the delivery of these toxins as cancer therapeutics, there is a need not only to increase their uptake in the target cancer cells, and their stability in blood, but also to reduce their systemic toxicity. We have developed a therapeutic nanostructured protein T22-PE24-H6 that incorporates exotoxin A from Pseudomonas aeruginosa, which selectively targets lymphoma cells because of its specific interaction with a highly overexpressed CXCR4 receptor (CXCR4 +) in DLBCL. Methods : T22-PE24-H6 cytotoxicity and its dependence on the CXCR4 receptor were evaluated in DLBCL cell lines using cell viability assays. Different in vitro experiments (mitochondrial membrane potential, Western Blot, Annexin V and DAPI staining) were conducted to determine T22-PE24-H6 cell death mechanisms. In vivo imaging and therapeutic effect studies were performed in a disseminated DLBCL mouse model that mimics organ infiltration in DLBCL patients. Finally, immunohistochemistry and histopathology analyses were used to evaluate the antineoplastic effect and systemic toxicity. Results : In vitro, T22-PE24-H6 induced selective cell death of CXCR4 + DLBCL cells by activating the apoptotic pathway. In addition, repeated T22-PE24-H6 intravenous administration in a CXCR4 + DLBCL-disseminated mouse model showed a significant reduction of lymphoma burden in organs clinically affected by DLBCL cells (lymph nodes and bone marrow). Finally, we did not observe systemic toxicity associated to the nanoparticle treatment in non-DLBCL-infiltrated organs. Conclusion : We have demonstrated here a potent T22-PE24-H6 antineoplastic effect, especially in blocking dissemination in a CXCR4 + DLBCL model without associated toxicity. Thereby, T22-PE24-H6 promises to become an effective alternative to treat CXCR4 + disseminated refractory or relapsed DLBCL patients

    Sistema de gestión de Archivos históricos XABAL Arkheia

    Get PDF
    Los sistemas de información para la gestión de archivos se han convertido en herramientas básicas para soportar el registro, control, circulación y organización de los documentos digitales y/o fí­sicos que se encuentran en una organización. Con el uso de las Tecnologí­as de la Información y las Comunicaciones se han desarrollado herramientas informáticas para facilitar un adecuado tratamiento archiví­stico contribuyendo a la difusión de los documentos almacenados en las instituciones archiví­sticas. El Centro de Informatización de la Gestión Documental, de la Universidad de las Ciencias Informáticas, desarrolló un sistema de gestión de archivos históricos, nombrado XABAL Arkheia. Este producto se basa en el manejo de archivos históricos aplicando la Norma Registros de Autoridad de Archivos Relativos a Instituciones, Personas y Familias (ISAAR (CPF)) y la Norma Internacional General de Descripción Archiví­stica (ISAD (G)). El objetivo del presente trabajo es mostrar las caracterí­sticas que se tuvieron en cuenta para informatizar los procesos de incorporación, consulta y conservación de documentos de archivo en archivos, así­ como su interrelación. Se evidencian los rasgos distintivos de las instituciones sobre los cuales se basó el desarrollo de la solución para el procesamiento de documentos de archivo. Así­ mismo, el artí­culo describe cómo se gestionan los servicios que se ofrecen en el Archivo y el proceso de recuperación de datos, utilizando el sistema. El sistema se encuentra desplegado en varias instituciones, en algunos casos con más de 4 años de explotación

    Effectiveness of an intervention for improving drug prescription in primary care patients with multimorbidity and polypharmacy:Study protocol of a cluster randomized clinical trial (Multi-PAP project)

    Get PDF
    This study was funded by the Fondo de Investigaciones Sanitarias ISCIII (Grant Numbers PI15/00276, PI15/00572, PI15/00996), REDISSEC (Project Numbers RD12/0001/0012, RD16/0001/0005), and the European Regional Development Fund ("A way to build Europe").Background: Multimorbidity is associated with negative effects both on people's health and on healthcare systems. A key problem linked to multimorbidity is polypharmacy, which in turn is associated with increased risk of partly preventable adverse effects, including mortality. The Ariadne principles describe a model of care based on a thorough assessment of diseases, treatments (and potential interactions), clinical status, context and preferences of patients with multimorbidity, with the aim of prioritizing and sharing realistic treatment goals that guide an individualized management. The aim of this study is to evaluate the effectiveness of a complex intervention that implements the Ariadne principles in a population of young-old patients with multimorbidity and polypharmacy. The intervention seeks to improve the appropriateness of prescribing in primary care (PC), as measured by the medication appropriateness index (MAI) score at 6 and 12months, as compared with usual care. Methods/Design: Design:pragmatic cluster randomized clinical trial. Unit of randomization: family physician (FP). Unit of analysis: patient. Scope: PC health centres in three autonomous communities: Aragon, Madrid, and Andalusia (Spain). Population: patients aged 65-74years with multimorbidity (≥3 chronic diseases) and polypharmacy (≥5 drugs prescribed in ≥3months). Sample size: n=400 (200 per study arm). Intervention: complex intervention based on the implementation of the Ariadne principles with two components: (1) FP training and (2) FP-patient interview. Outcomes: MAI score, health services use, quality of life (Euroqol 5D-5L), pharmacotherapy and adherence to treatment (Morisky-Green, Haynes-Sackett), and clinical and socio-demographic variables. Statistical analysis: primary outcome is the difference in MAI score between T0 and T1 and corresponding 95% confidence interval. Adjustment for confounding factors will be performed by multilevel analysis. All analyses will be carried out in accordance with the intention-to-treat principle. Discussion: It is essential to provide evidence concerning interventions on PC patients with polypharmacy and multimorbidity, conducted in the context of routine clinical practice, and involving young-old patients with significant potential for preventing negative health outcomes. Trial registration: Clinicaltrials.gov, NCT02866799Publisher PDFPeer reviewe

    Clonal chromosomal mosaicism and loss of chromosome Y in elderly men increase vulnerability for SARS-CoV-2

    Full text link
    The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, COVID-19) had an estimated overall case fatality ratio of 1.38% (pre-vaccination), being 53% higher in males and increasing exponentially with age. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, we found 133 cases (1.42%) with detectable clonal mosaicism for chromosome alterations (mCA) and 226 males (5.08%) with acquired loss of chromosome Y (LOY). Individuals with clonal mosaic events (mCA and/or LOY) showed a 54% increase in the risk of COVID-19 lethality. LOY is associated with transcriptomic biomarkers of immune dysfunction, pro-coagulation activity and cardiovascular risk. Interferon-induced genes involved in the initial immune response to SARS-CoV-2 are also down-regulated in LOY. Thus, mCA and LOY underlie at least part of the sex-biased severity and mortality of COVID-19 in aging patients. Given its potential therapeutic and prognostic relevance, evaluation of clonal mosaicism should be implemented as biomarker of COVID-19 severity in elderly people. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, individuals with clonal mosaic events (clonal mosaicism for chromosome alterations and/or loss of chromosome Y) showed an increased risk of COVID-19 lethality

    IMPACT-Global Hip Fracture Audit: Nosocomial infection, risk prediction and prognostication, minimum reporting standards and global collaborative audit. Lessons from an international multicentre study of 7,090 patients conducted in 14 nations during the COVID-19 pandemic

    Get PDF

    Autonomous cortisol secretion in patients with primary aldosteronism: prevalence and implications on cardiometabolic profile and on surgical outcomes

    Get PDF
    Purpose: The aim of this study was to evaluate the prevalence of autonomous cortisol secretion (ACS) in patients with primary aldosteronism (PA) and its implications on cardiometabolic and surgical outcomes. Methods: This is a retrospective multicenter study of PA patients who underwent 1 mg dexamethasone-suppression test (DST) during diagnostic workup in 21 Spanish tertiary hospitals. ACS was defined as a cortisol post-DST >1.8 μg/dL (confirmed ACS if >5 μg/dL and possible ACS if 1.8–5 μg/dL) in the absence of spe cific clinical features of hypercortisolism. The cardiometabolic profile was compared with a control group with ACS without PA (ACS group) matched for age and DST levels. Results: The prevalence of ACS in the global cohort of patients with PA (n = 176) was 29% (ACS–PA; n = 51). Ten patients had confirmed ACS and 41 possible ACS. The cardiometabolic profile of ACS–PA and PA-only patients was simil ar, except for older age and larger tumor size of the adrenal lesion in the ACS–PA group. When comparing the ACS–PA group (n = 51) and the ACS group (n = 78), the prevalence of hypertension (OR 7.7 (2.64–22.32)) and cardiovascular events (OR 5.0 (2.29–11.07)) was higher in ACS–PA patients than in ACS patients. The coexistence of ACS in patien ts with PA did not affect the surgical outcomes, the proportion of biochemical cure and clinical cure being similar between ACS–PA and PA-only groups. Conclusion: Co-secretion of cortisol and aldosterone affects almost one-thi rd of patients with PA. Its occurrence is more frequent in patients with larger tumors and advanced age. However, the cardiometabolic and surgical outcomes of patients with ACS–PA and PA-only are similar
    corecore