228 research outputs found

    Quantitative predictions on auxin-induced polar distribution of PIN proteins during vein formation in leaves

    Get PDF
    The dynamic patterning of the plant hormone auxin and its efflux facilitator the PIN protein are the key regulator for the spatial and temporal organization of plant development. In particular auxin induces the polar localization of its own efflux facilitator. Due to this positive feedback auxin flow is directed and patterns of auxin and PIN arise. During the earliest stage of vein initiation in leaves auxin accumulates in a single cell in a rim of epidermal cells from which it flows into the ground meristem tissue of the leaf blade. There the localized auxin supply yields the successive polarization of PIN distribution along a strand of cells. We model the auxin and PIN dynamics within cells with a minimal canalization model. Solving the model analytically we uncover an excitable polarization front that triggers a polar distribution of PIN proteins in cells. As polarization fronts may extend to opposing directions from their initiation site we suggest a possible resolution to the puzzling occurrence of bipolar cells, such we offer an explanation for the development of closed, looped veins. Employing non-linear analysis we identify the role of the contributing microscopic processes during polarization. Furthermore, we deduce quantitative predictions on polarization fronts establishing a route to determine the up to now largely unknown kinetic rates of auxin and PIN dynamics.Comment: 9 pages, 4 figures, supplemental information included, accepted for publication in Eur. Phys. J.

    Gestaltungsdomänen des Kostenmanagements

    Get PDF
    Kostenmanagement bezeichnet eine Gestaltung der Programme, Potentiale und Prozesse in einer Unternehmung nach Kostenkriterien. Mit anderen Worten werden im Rahmen eines Kostenmanagements so unterschiedliche Entscheidungen wie die über den Diversifikationsgrad (Breite) und die Differenziertheit (Sorten- bzw. Variantenvielfalt) des Produktprogramms, über die Fertigungstiefe (Eigenerstellung oder Fremdbezug), über alternative Produktionsverfahren und logistische Prozesse sowie über die Anpassung von Kapazitäten und Betriebsgrößen, die Einsatzmengen von Materialien bzw. über eine Werkstoffsubstitution durchweg mit Blick auf die jeweils relevanten Kosten gefällt. Offensichtlich handelt es sich beim Kostenmanagement um eine klassische Domäne der Unternehmensführung

    Three ancient hormonal cues co-ordinate shoot branching in a moss.

    Get PDF
    Shoot branching is a primary contributor to plant architecture, evolving independently in flowering plant sporophytes and moss gametophytes. Mechanistic understanding of branching is largely limited to flowering plants such as Arabidopsis, which have a recent evolutionary origin. We show that in gametophytic shoots of Physcomitrella, lateral branches arise by re-specification of epidermal cells into branch initials. A simple model co-ordinating the activity of leafy shoot tips can account for branching patterns, and three known and ancient hormonal regulators of sporophytic branching interact to generate the branching pattern- auxin, cytokinin and strigolactone. The mode of auxin transport required in branch patterning is a key divergence point from known sporophytic pathways. Although PIN-mediated basipetal auxin transport regulates branching patterns in flowering plants, this is not so in Physcomitrella, where bi-directional transport is required to generate realistic branching patterns. Experiments with callose synthesis inhibitors suggest plasmodesmal connectivity as a potential mechanism for transport.We thank Catherine Rameau, Eva Sundberg and Klaus von Schwartzenberg for giving us mutant lines, Nik Cunniffe for his support with statistical analyses and Siobhan Braybrook for help with the scanning electron microscope. We thank our funding bodies for financial support. Yoan Coudert and Jill Harrison are funded by a BBSRC grant ‘PIN proteins and architectural diversification in plants’ (Grant BB/L00224811) and fellowships from the Gatsby Charitable Foundation (GAT2962) and Royal Society. Ottoline Leyser and Wojtek Palubicki are funded by the Gatsby Charitable Foundation (Grant GAT3272C) and by the European Research Council (Grant N° 294514—EnCoDe). Karin Ljung is funded by the Swedish Governmental Agency for Innovation Systems (VINNOVA) and the Swedish Research Council (VR) and thanks Roger Granbom for excellent technical assistance. Ondrej Novak is funded by a Czech Ministry of Education grant from the National Program for Sustainability I (LO1204).This is the final published version of the article. It was originally published in eLIFE (Coudert Y, Palubicki W, Ljung K, Novak O, Leyser O, Harrison CJ, eLIFE, 2015, 4:e06808, doi:10.7554/eLife.06808). The final version is available at http://dx.doi.org/10.7554/eLife.0680

    Over-expression of the IGI1 leading to altered shoot-branching development related to MAX pathway in Arabidopsis

    Get PDF
    Shoot branching and growth are controlled by phytohormones such as auxin and other components in Arabidopsis. We identified a mutant (igi1) showing decreased height and bunchy branching patterns. The phenotypes reverted to the wild type in response to RNA interference with the IGI1 gene. Histochemical analysis by GUS assay revealed tissue-specific gene expression in the anther and showed that the expression levels of the IGI1 gene in apical parts, including flowers, were higher than in other parts of the plants. The auxin biosynthesis component gene, CYP79B2, was up-regulated in igi1 mutants and the IGI1 gene was down-regulated by IAA treatment. These results indicated that there is an interplay regulation between IGI1 and phytohormone auxin. Moreover, the expression of the auxin-related shoot branching regulation genes, MAX3 and MAX4, was down-regulated in igi1 mutants. Taken together, these results indicate that the overexpression of the IGI1 influenced MAX pathway in the shoot branching regulation

    Tryptophan-dependent auxin biosynthesis is required for HD-ZIP III-mediated xylem patterning

    Full text link
    The development and growth of higher plants is highly dependent on the conduction of water and minerals throughout the plant by xylem vessels. In Arabidopsis roots the xylem is organized as an axis of cell files with two distinct cell fates: the central metaxylem and the peripheral protoxylem. During vascular development, high and low expression levels of the class III HD-ZIP transcription factors promote metaxylem and protoxylem identities, respectively. Protoxylem specification is determined by both mobile, ground tissue-emanating miRNA165/6 species, which downregulate, and auxin concentrated by polar transport, which promotes HD-ZIP III expression. However, the factors promoting high HD-ZIP III expression for metaxylem identity have remained elusive. We show here that auxin biosynthesis promotes HD-ZIP III expression and metaxylem specification. Several auxin biosynthesis genes are expressed in the outer layers surrounding the vascular tissue in Arabidopsis root and downregulation of HD-ZIP III expression accompanied by specific defects in metaxylem development is seen in auxin biosynthesis mutants, such as trp2-12, wei8 tar2 or a quintuple yucca mutant, and in plants treated with L-kynurenine, a pharmacological inhibitor of auxin biosynthesis. Some of the patterning defects can be suppressed by synthetically elevated HD-ZIP III expression. Taken together, our results indicate that polar auxin transport, which was earlier shown to be required for protoxylem formation, is not sufficient to establish a proper xylem axis but that root-based auxin biosynthesis is additionally required
    corecore