12 research outputs found

    ExperNet: An Intelligent Multiagent System for WAN Management

    Full text link
    This paper describes ExperNet, an intelligent multi-agent system that was developed under an EU funded project to assist in the management of a large-scale data network. ExperNet assists network operators at various nodes of a WAN to detect and diagnose hardware failures and network traffic problems and suggests the most feasible solution, through a web-based interface. ExperNet is composed by intelligent agents, capable of both local problem solving and social interaction among them for coordinating problem diagnosis and repair. The current network state is captured and maintained by conventional network management and monitoring software components, which have been smoothly integrated into the system through sophisticated information exchange interfaces. For the implementation of the agents, a distributed Prolog system enhanced with networking facilities was developed. The agents’ knowledge base is developed in an extensible and reactive knowledge base system capable of handling multiple types of knowledge representation. ExperNet has been developed, installed and tested successfully in an experimental network zone of Ukraine

    Evolutionary Analysis of the Bacillus subtilis Genome Reveals New Genes Involved in Sporulation

    Get PDF
    Bacilli can form dormant, highly resistant, and metabolically inactive spores to cope with extreme environmental challenges. In this study, we examined the evolutionary age of Bacillus subtilis sporulation genes using the approach known as genomic phylostratigraphy. We found that B. subtilis sporulation genes cluster in several groups that emerged at distant evolutionary time-points, suggesting that the sporulation process underwent several stages of expansion. Next, we asked whether such evolutionary stratification of the genome could be used to predict involvement in sporulation of presently uncharacterized genes (y-genes). We individually inactivated a representative sample of uncharacterized genes that arose during the same evolutionary periods as the known sporulation genes and tested the resulting strains for sporulation phenotypes. Sporulation was significantly affected in 16 out of 37 (43%) tested strains. In addition to expanding the knowledge base on B. subtilis sporulation, our findings suggest that evolutionary age could be used to help with genome mining

    The Risk Evaluation Expert System of World EXPO 1996

    Get PDF
    In this paper an expert system is presented for the evaluation of potential risk factors of World Exposition organised in the year 1996 in Budapest.The system was developed under a contract with the World Expo Office in Budapest during 1991. The experts engaged by the Expo Office defined eight different categories of potential risk factors containing about 180 concrete risk elements. As traditional decision support approaches and risk analysis methods were not applicable, an expert system was built to handle the problem in its complexity. A special method was also developed to score different alternatives by the use of demons

    Artificial intelligence in simulation

    No full text

    Embryo-Like Features in Developing Bacillus subtilis Biofilms

    Get PDF
    Correspondence between evolution and development has been discussed for more than two centuries. Recent work reveals that phylogeny-ontogeny correlations are indeed present in developmental transcriptomes of eukaryotic clades with complex multicellularity. Nevertheless, it has been largely ignored that the pervasive presence of phylogeny-ontogeny correlations is a hallmark of development in eukaryotes. This perspective opens a possibility to look for similar parallelisms in biological settings where developmental logic and multicellular complexity are more obscure. For instance, it has been increasingly recognized that multicellular behavior underlies biofilm formation in bacteria. However, it remains unclear whether bacterial biofilm growth shares some basic principles with development in complex eukaryotes. Here we show that the ontogeny of growing Bacillus subtilis biofilms recapitulates phylogeny at the expression level. Using time-resolved transcriptome and proteome profiles, we found that biofilm ontogeny correlates with the evolutionary measures, in a way that evolutionary younger and more diverged genes were increasingly expressed toward later timepoints of biofilm growth. Molecular and morphological signatures also revealed that biofilm growth is highly regulated and organized into discrete ontogenetic stages, analogous to those of eukaryotic embryos. Together, this suggests that biofilm formation in Bacillus is a bona fide developmental process comparable to organismal development in animals, plants, and fungi. Given that most cells on Earth reside in the form of biofilms and that biofilms represent the oldest known fossils, we anticipate that the widely adopted vision of the first life as a single-cell and free-living organism needs rethinking.CC BY-NC 4.0</p
    corecore