585 research outputs found
Complement factor H binding of monomeric C-reactive protein downregulates proinflammatory activity and is impaired with at risk polymorphic CFH variants
Inflammation and immune-mediated processes are pivotal to the pathogenic progression of age-related macular degeneration (AMD). Although plasma levels of C-reactive protein (CRP) have been shown to be associated with an increased risk for AMD, the pathophysiological importance of the prototypical acute-phase reactant in the etiology of the disease is unknown, and data regarding the exact role of CRP in ocular inflammation are limited. In this study, we provide mechanistic insight into how CRP contributes to the development of AMD. In particular, we show that monomeric CRP (mCRP) but not the pentameric form (pCRP) upregulates IL-8 and CCL2 levels in retinal pigment epithelial cells. Further, we show that complement factor H (FH) binds mCRP to dampen its proinflammatory activity. FH from AMD patients carrying the 'risk' His402 polymorphism displays impaired binding to mCRP, and therefore proinflammatory effects of mCRP remain unrestrained
Priming of SARS-CoV-2 S protein by several membrane-bound serine proteinases could explain enhanced viral infectivity and systemic COVID-19 infection
The ongoing COVID-19 pandemic has already caused over a million deaths worldwide, and this death toll will be much higher before effective treatments and vaccines are available. The causative agent of the disease, the coronavirus SARS-CoV-2, shows important similarities with the previously emerged SARS-CoV-1, but also striking differences. First, SARS-CoV-2 possesses a significantly higher transmission rate and infectivity than SARS-CoV-1 and has infected in a few months over 60 million people. Moreover, COVID-19 has a systemic character, as in addition to the lungs, it also affects the heart, liver, and kidneys among other organs of the patients and causes frequent thrombotic and neurological complications. In fact, the term "viral sepsis" has been recently coined to describe the clinical observations. Here I review current structure-function information on the viral spike proteins and the membrane fusion process to provide plausible explanations for these observations. I hypothesize that several membrane-associated serine proteinases (MASPs), in synergy with or in place of TMPRSS2, contribute to activate the SARS-CoV-2 spike protein. Relative concentrations of the attachment receptor, ACE2, MASPs, their endogenous inhibitors (the Kunitz-type transmembrane inhibitors, HAI-1/SPINT1 and HAI-2/SPINT2, as well as major circulating serpins) would determine the infection rate of host cells. The exclusive or predominant expression of major MASPs in specific human organs suggests a direct role of these proteinases in e.g., heart infection and myocardial injury, liver dysfunction, kidney damage, as well as neurological complications. Thorough consideration of these factors could have a positive impact on the control of the current COVID-19 pandemic
Complement factor H binding of monomeric C-reactive protein downregulates proinflammatory activity and is impaired with at risk polymorphic CFH variants
Inflammation and immune-mediated processes are pivotal to the pathogenic progression of age-related macular degeneration (AMD). Although plasma levels of C-reactive protein (CRP) have been shown to be associated with an increased risk for AMD, the pathophysiological importance of the prototypical acute-phase reactant in the etiology of the disease is unknown, and data regarding the exact role of CRP in ocular inflammation are limited. In this study, we provide mechanistic insight into how CRP contributes to the development of AMD. In particular, we show that monomeric CRP (mCRP) but not the pentameric form (pCRP) upregulates IL-8 and CCL2 levels in retinal pigment epithelial cells. Further, we show that complement factor H (FH) binds mCRP to dampen its proinflammatory activity. FH from AMD patients carrying the “risk” His402 polymorphism displays impaired binding to mCRP, and therefore proinflammatory effects of mCRP remain unrestrained
Structure of the Homodimeric androgen receptor ligand-binding domain
The androgen receptor (AR) plays a crucial role in normal physiology, development and metabolism as well as in the aetiology and treatment of diverse pathologies such as androgen insensitivity syndromes (AIS), male infertility and prostate cancer (PCa). Here we show that dimerization of AR ligand-binding domain (LBD) is induced by receptor agonists but not by antagonists. The 2.15-Å crystal structure of homodimeric, agonist- and coactivator peptide-bound AR-LBD unveils a 1,000-Å2 large dimerization surface, which harbours over 40 previously unexplained AIS- and PCa-associated point mutations. An AIS mutation in the self-association interface (P767A) disrupts dimer formation in vivo, and has a detrimental effect on the transactivating properties of full-length AR, despite retained hormone-binding capacity. The conservation of essential residues suggests that the unveiled dimerization mechanism might be shared by other nuclear receptors. Our work defines AR-LBD homodimerization as an essential step in the proper functioning of this important transcription factor
Thrombomodulin enhances complement regulation through strong affinity interactions with factor H and C3b-Factor H complex
Introduction Coagulation and complement systems are simultaneously activated at sites of tissue injury, leading to thrombin generation and opsonisation with C3b. Thrombomodulin (TM) is a cell-bound regulator of thrombin activation, but can also enhance the regulatory activity of complement factor H (FH), thus accelerating the degradation of C3b into inactive iC3b. Objectives This study sought to determine the biophysical interaction affinities of two recombinant TM analogs with thrombin, FH and C3b in order to analyze their ability to regulate serum complement activity. Methods Surface plasmon resonance (SPR) analysis was used to determine binding affinities of TM analogs with FH and C3b, and compared to thrombin as positive control. The capacity of the two recombinant TM analogs to regulate complement in serum was tested in standard complement hemolytic activity assays. Results SPR analysis showed that both TM analogs bind FH and C3b-Factor H with nanomolar and C3b with micromolar affinity; binding affinity for its natural ligand thrombin was several fold higher than for FH. At a physiological relevant concentration, TM inhibits complement hemolytic activity in serum via FH dependent and independent mechanisms. Conclusions TM exhibits significant binding affinity for complement protein FH and C3b-FH complex and its soluble form is capable at physiologically relevant concentrations of inhibiting complement activation in serum
TET2 missense variants in human neoplasia. A proposal of structural and functional classification
The human TET2 gene plays a pivotal role in the epigenetic regulation of normal and malignant hematopoiesis. Somatic TET2 mutations have been repeatedly identified in age-related clonal hematopoiesis and in myeloid neoplasms ranging from acute myeloid leukemia (AML) to myeloproliferative neoplasms. However, there have been no attempts to systematically explore the structural and functional consequences of the hundreds of TET2 missense variants reported to date. We have sequenced the TET2 gene in 189 Spanish AML patients using Sanger sequencing and NGS protocols. Next, we performed a thorough bioinformatics analysis of TET2 protein and of the expected impact of all reported TET2 missense variants on protein structure and function, exploiting available structure-and-function information as well as 3D structure prediction tools. We have identified 38 TET2 allelic variants in the studied patients, including two frequent SNPs: p.G355D (10 cases) and p.I1762V (28 cases). Four of the detected mutations are reported here for the first time: c.122C>T (p.P41L), c.4535C>G (p.A1512G), c.4760A>G (p.D1587G), and c.5087A>T (p.Y1696F). We predict a complex multidomain architecture for the noncatalytic regions of TET2, and in particular the presence of well-conserved α+β globular domains immediately preceding and following the actual catalytic unit. Further, we provide a rigorous interpretation of over 430 missense SNVs that affect the TET2 catalytic domain, and we hypothesize explanations for ~700 additional variants found within the regulatory regions of the protein. Finally, we propose a systematic classification of all missense mutants and SNPs reported to date into three major categories (severe, moderate, and mild), based on their predicted structural and functional impact. The proposed classification of missense TET2 variants would help to assess their clinical impact on human neoplasia and may guide future structure-and-function investigations of TET family members
The impact of growth promoters on muscle growth and the potential consequences for meat quality
To meet the demands of increased global meat consumption, animal production systems will have to become more efficient, or at least maintain the current efficiency utilizing feed ingredients that are not also used for human consumption. Use of growth promoters is a potential option for increasing production animal feed efficiency and increased muscle growth. The objective of this manuscript is to describe the mechanisms by which the growth promoters, beta-adrenergic agonists and growth hormone, mediate their effects, with specific consideration of the aspects which have implications for meat quality.The work described in this manuscript was supported by a BBSRC LINK Zoetis grant, number BB/J005320/1, as well as a BBSRC CASE PhD studentship awarded to David Brown and Krystal Hemmings and a PhD scholarship awarded to Molebeledi HD Mareko by the Botswana College of Agricultur
31 visiones actuales de la transparencia
Treinta y una aportaciones de autores nacionales y extranjeros sobre la transparencia de las instituciones públicas y de los sujetos obligados por la Ley 19/2013 de 9 de diciembre y el derecho de acceso a la información pública
Practical guidelines to manage discordant situations of SMN2 copy number in patients with spinal muscular atrophy
Objective Assessment of SMN2 copy number in patients with spinal muscular atrophy (SMA) is essential to establish careful genotype-phenotype correlations and predict disease evolution. This issue is becoming crucial in the present scenario of therapeutic advances with the perspective of SMA neonatal screening and early diagnosis to initiate treatment, as this value is critical to stratify patients for clinical trials and to define those eligible to receive medication. Several technical pitfalls and interindividual variations may account for reported discrepancies in the estimation of SMN2 copy number and establishment of phenotype-genotype correlations. Methods We propose a management guide based on a sequence of specified actions once SMN2 copy number is determined for a given patient. Regardless of the method used to estimate the number of SMN2 copies, our approach focuses on the manifestations of the patient to recommend how to proceed in each case. Results We defined situations according to SMN2 copy number in a presymptomatic scenario of screening, in which we predict the possible evolution, and when a symptomatic patient is genetically confirmed. Unexpected discordant cases include patients having a single SMN2 copy but noncongenital disease forms, 2 SMN2 copies compatible with type II or III SMA, and 3 or 4 copies of the gene showing more severe disease than expected. Conclusions Our proposed guideline would help to systematically identify discordant SMA cases that warrant further genetic investigation. The SMN2 gene, as the main modifier of SMA phenotype, deserves a more in-depth study to provide more accurate genotype-phenotype correlations
- …
